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ZRCSLEMS OF THE THEORY OF DISFERSION RELATIONS

Bogoliubov, Medvedev, Polivanov

1., Introduction

T:2 gu-otum field theory has recently produced a new trend :
an \mporfant

which s bhelieve will have " future. This trend is connected

4ith 03 sc-called dispersion relations, that is, relations be-

tweer Lne joermitian part of the scattering amplitude and a de-
eneray

VYPt ofiintegral over #ke—emergy—frem 11s anti-Hermitian

74 & certain extent, such relations arise independentliy of

the consve .. details of the theory under consideration; to ob-
tain % 2m .e essential thing is the requirement of microscopi-

51 .ty, which in the majority of worlks is formulated

{ 4y ¢comection with the conditions of relativistic invariance)

. . . . 188
in ths fora of a demand that the commutator§ of field quantite

e
76+ - g space-~like points. It is precisely this general

=f the dispersion relations on the one hand, and tﬁe

Pant st wney correlate magnitudes that may be neasured direct-

1y {wi:ck is pontrivial for the gquantum field theory) on the
arouseS .

other. th: & emwse great interest in such investigatitms.i0t

..o part of theoreticians but also among the experi-

Jas1 c2 the fact, however, that the literature on disper-

tons runs into several dozens of papers and that

1S Al

gisue-iior relations for a whole series of concrete physical

[ Nl SL N

proce sees nave been written and compared with experiment, as

¥

.0d has been suggested for obtaining these relations

wl statisfy even the usual requirements of rigorésse
Y
in e e cmuonk, The very fact ef numerous different ways of
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cates that there is something lacking in the justification‘bﬁ
Sladegdprcamd-, In addition, the gquestion of the physical agsumptions
that are really necessary to obtain the dispersion relations is
a§ yet an open one; it is a question of the degree to which they
are comnnected with the present-day scheme of the quantum field

W
theory, or to what extent the theory may be generalizedy the

relations remaining valid.

vl

The present investigation is devoted to these two problems.
In section two we shall attempt to formulate the basic principles,
4he
which, in our opinion, should be taken from\oonventional theory
decwve .
in order to meke—poseiblre—the—derivesion—of dispersion relations.
Otherwise, the construction of the theory may be arbitrary; for
er
example, we shall not need to fix the type of Lagrangian { &f in
general write it out explicitly), nor shall we make use of the
Hamiltonian method.
We shall mainly deal with the variational derivatives of )
scatleen . . .
the M matrix over asgmpis=s#e fields of real particles, -
the so-called radiation operators. Section three will be de-
voted to establishing certain general relations between such
operators. The study of radiation operators is closely connected
with the study of Green!s functions for real particles. There- ok

fore, Sections four and five will deal with a new pl.ocug o# "

ie well-known spectral representatione of FAILIenTIBRWENH, TTIHIE LT
Q“Q\'.‘*IC /
pzooﬁv will be based on a study of thelprOpertiesgdh-na&y-

tiniqﬂ of the R%S%g matrix elements of the respective radiation
operators andy;mm?the advantage that no divergent expressions
will appear anywhere, even in the intermediate stages.

Finaly, Section six and seven is devoted to the derivation
of the dispersion relations themselves, and Section eight to a

detailed consideration of them in a number of concrete cases.
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#We may note that in themselves the dispersion relations are

in no way something new 1o physics, and different types were known
even before the creation of the qusntum field theory. As early as
1926-27, Kronig and Kramers obtained in classical electrodynamics

the dispersion relation between the read and imaginary parts of

son-1s alse due to the

the coefficient of refraction
RS
— - [ 2ot ITm n{w?)
A f o .| o
V-Q_ | v (co ) -n (’))J] = {’ ‘w.\ e ‘X’ L ,

| — ’ Y
- J it L-,u’d— wt)

dat, >
Q;hi:% M;)m'q P sy due to fAe,

fact that signals cannot propagate at a velocity greater than the

velocity of light. At the present time, various forms of disper=
Variows phases

sion relations are widely used in e—nwabe riments of

radio engineeringe.

The principal mathematical device for obtaining dispersion
relations is the well known Cauchy theorem. Since, however, in

the quantum field theory we have to #§ deal in a number of cases,

with generalized functions, we must be cautious in applying this

theorem.
Iet us assume a certain function, f(E), analytic in the

upper half-plane ,Im £>0 with the properties: (a) for
l a anosen guch
any positive 5 swele a constant A (D ) may be hefdesied that

; A(s)
f4 /L—)/ <
(E)
~ g PR S . T Lo AN ¢ e s SRy g s e
“WHen LI ELiny when LTIV o ;U the" fune-T

yUINY

_integadle
tion f(E) tends, in improper semse, to the fanctionvdn the class

C (ﬁ,i.) (q is a certain positive integer). And the
words "f(E) is a function integrable on the class Cig,2) "
means that f£(E) is defined oﬁﬁﬁ,real axis as the kernel of a
linear fumctional ,*

T ey g
J JLE)hiE)AE 1)

=0
in the linear space of- the functions h(£) that satisiy the
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conditions
:‘ {/”j / ‘ st p :
RO L
|
J
and the limit transition in the improper sense means that there &

x/

is an ordinary limit transition for the respective functionals &

for - v <E<tro; 820,1,.,1  p= 0, 4,0, %,

We shall agree to call the analytic function that satisfies
the formulated conditions regular in the upper half-plane.

Tet us now conmstruct a closed contour formed by the segment
( iv-R 5 iR ) and the semi-circle with radius R,

lying in the upper half-plane. Since iIn virtue of property {(a) the

Joety Josl gD L . ;
integral of ﬂﬂii//’<~"53 over this semi-circle will =t &
L 5¢ tend to zero, it follews from Cauchy's theorem that:
sy 5o
q oy ! / / {f’/ . - - ;} N -~ -
f' { E) = —J'—'- _r AF / ! L £ 200 s D . L
ikl d E-E
R ()
Taking into consideration property (b), we are able to shift the
. Iattin o,
line of waw irtegralisto the neal axis, by : 720 , and we
write! s -
_ f/’/ (” E/l = 2'}__ ! - - B y :)71 _: > 0
' 17 / ”
e ( Lls 3 )

- 5

tet us now also transfer to the =zeazl axis the point of ob-

-~

servation E ( ImE —» O ) and note that for wee weal E and

EI we have a symbolic identity:

- - R l( B ' Y

g ¥ i / oo ———— - Yot e Lt
CLV) e 2 !"I i ""F" = ‘ o) ‘ E - = )
€22 BlE-i¢ S ESE (1.4)
£20

x7For details on the determination of integréie functions and a
non-proper limit transition see the work of N.N.Bogoliubov and

D.V.Shirkov, UFN,55, 149 (1955), Art. 2, p. 164,
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We then obtain

Mejz = P Dot AL e g Btk e (1.5)

If we isolate from this formula the real part, we will arrive

at a typical "dispersion relation"
o> J
P, 7(<) = -'- S dm RE L s

/ 7 =

Yy

However, in the majority of cases it is not possible to make
use of the dispersion relation directly in the form (1.6) because
in many cases of application the conditions (a}, (b) prove too
stringent: the real physical functions that take part in the dis-
persion relations may not only fail to diminish at infinity,they

abhouqh
may 2ven increase; h-néanzy not faster than a certain polynomial.

We shall show that it is not difficult to extend the above
argument to the case of functions f(k), which are analytic in the
upper half-plane and Tor which conditions less stringent than (a)
and (b) are carried out:

. . such D
(2') there is amsin on Lnteﬁaz "m > O\that for any J >0
e chosen

constants A: (0 may be dmsiewestsd in such a way that:

(P P R o B L , ~ a G
1%&/{§«ﬂJQHBJ £ .. Hu Ly Loc iuﬁ/>J}
(b*) when ImE » O the function f(E) tends, in the improper
sense, to a function integrable on a certain class Cz(%,l) .

We shall say that such analytic functions have at infinity a pole
of the n~th order, where n is the largest of the numbersLm+;)and
(a- 2), or that at infinity they do not have an essential &h
Inieanininm, s.ﬁgﬂar&“.
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In order to reduce this case to the preceding one, let us
consider in addition to f£(E) the function

gle)

(£): ———
! (E Es Né)"”‘ . (1.7)
It is clear that if f(E) is analytic in the upper half-plane and
has at infinity a pole not higher than of the n-th order, then the
function g(E) will be regular in the upper half-plane in the case
of any real E, and positive el. Therefore, for g{E) it is possib-

le to make use of the relation (1. 5) and write:

(E-Eo+ic T e
po- E= ) [ ki e) )
,7( u+[ / {
ELE ) (- toflfj N
( / ( (1.8)
- o < E} E, <+ >° j
With the aid of a symbolic identity analogous to (1.4)
oo /:nv; ,ﬁ,j@ - P j ! ' % (j‘/"/” {\76”)/ VRPN 3
- ) 1 R O t-r (1.9)
tv0 LF EJ""&J I et f ¢ "/
¢>o0 XLE ) J) .
ace w¥e

we|aguin wisembe able to divide mm the integral (1. 8) the 5 -like

parts and the prlncipal values and obtaln :

Ls &)™ T ey de

poe £ .

I (£l E)E-E) ™ |

+;ﬁYEo) Foos B e ) Hheso)

Thus, also in the case of the functions under consideration,
which have at infinity a pole not higher than the n-th order, re-
lations of the type (1.5) may #m=im be written. These relations,

. hoed
however, will nowj lh/vﬁ’fy up to the polynomial of wee degree af S
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n, and 2) have a more complicated kernel that ensures convergence

of the integral (a simple integral of the type entering into ( 1.5)

would be divergent for the function increasing at infinity).

The relation (1.10) may be also given a slightly more conven®.:

ient form.
i B that

For this purpose let us select any real c;

satisfy the conditions

<

> ¢ Ei' =0

Ly for @ = 0y1yeeey, N

( AeFine the < when
dsousmmme Opcration 2.  e# applied to any function

(1.11)

;%é let us &
- f(E), as
.r"ﬂ[:): Z_ c~§5€')_ '
£ kte 5) ! . (1.12)
: 25 gives zero when applied

It is clear that in virtue of (1,11)
to any polynomial of E of degree no% greater than n. Tet us now

note that the difference

j_ee)
/(E"—E,)(E/-EC,)”*’ ELE / (1.13)

- 4
is, with tespect to E, a polynomial of the n-th degree (when both

members are combined the denominatorlﬂ' - E)cancels). Therefore

i £ n+
\T/ Ie oy / [ "\\/C*/ LY >) / ’/\__ /7
' ;{“ \L”’/l.‘—)i.-.‘j AL—- J ) /- 'b..vja—'uw - ~7/ - } T -
[ WETEJERE) E-E;, '
\
i Now applying operation ZL to both parts (1.10) we immediately
obtain
+ O
N ! e TR
ﬁ - | / i \ o~
/ C,J j‘“‘i}) - p '\ p/"/t) / _ O/)C (1.14)
. LK ~} L) et )
) 2 )
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since in this way all the polynomials disappear.
Thus, it may be said that the "simple” relation (1.3) is retai-

ned also with respect to functions f(E) which polynomially increase

“Fhem
at infinity, the only thing rgguired being the application to .t of *
— with
the operation 2 , that excludes polynomlals.-ii-tho SUfILccenii
L4 °

ugp Ne

It might appear that for the polynomially increasing functions
f(E') the right-hand side (1.14)does not have any meaning due °to
the divergences of the integrals (%5 this was noted with rexpect to
(1.5) ); however, this is not so since from an ;nalysis of the deri-
vation of this relation it may &e seen that although the integral
of each irdividual term in the sum with respect to j does diverge,
still the integral of the linear combination with c& gpd @J Thich

enters into (1l.14) must be convergent, the c and EJ satisfying

(1.11). o0 )
Finally, taking from both parts of (1.14) the real part, we “:=°
obtain the final form of the corresponding dispersion relation:
e . .

/ oo ) f’- L °
Zc; !hﬁltd):*f)l]jmfw) /@tE .

— ) Z_; (1.15)
(d) ) eruag

—e r\d

In order that one may utilize mathematical dispersion ;ela;ions
in the study of any process of the collision of particles, féﬂis —
necessary, as it may bemgéen,;‘o be sure first that the respectlve
scattering amplitude as a function of the energy may be properly
continued to the upper halprlane. In order at once to .,.xplain the
connection existing between the property of analytic conp@nuizz of
the scattering amplitude onto the upper half-plane and the co;dition
of causality, let us consider a purely illustrative single-dimension
example. o

Let us assume that the sca+ter1ng anplltude f(E) is defined as

éze)/ Ty Fe  aae

° i v
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In virot‘l;e of the causality condition (the fact that the causality

° [
o condition leads precisely to relations of this type, will be ob-

. o Flt)=0 for t<O0.

Koy passing to the upper half-plane

e o B = L4y ’ y > O

wé note that the factor e~ vt plays the 7ol® nf a cut-off factor

,ensuring the convergence of the integral (1l.16), since at t < 0,

-\ .
e where e inereases, the function F(t) is equal to zero,

Itgmay be shown that even if F(t) is a singular function, the
only requirement heing that it remain integrable in the sense of

our definition (1.1,2), the integral (1.16) will still converge and
swaular hies
o define the function without essential 3 @-1-*6\-1-95 at infinity.
° © . QWIS
g -7 - - *°The situgtior is different if F(t) ———————> 7,670 only for
[ B
t <+— a, where ‘a'is a certain "elementary length". Then by

. replacing in (1.16} ,
. ’ t > t-4 &
. we shall see that

° —-¢ 2

=9

T e £ E)= < F(E)
. e swawlae
° where now there is no essential pa-&a-l&-a-r—éty at infinity - in
—_— bukr because a2l
wee——ommmed” the factor fi(E); bub—
. . ouriarws doas hav@ swgula¢ |‘\"n
. abdegemsemzmatty tbe function f(E), swol jan essential p&%ﬁ@!ﬁv

.

2 of' the factor e

. E a
- gee®es, Therefore, in this case in order to obtain #wise function
- : ¢ ' valich
~+ f£&r which the disper-sion relations are semmsied—ewt, it is necessa-
° . (L E X
K ry to multiply f(E) by e with « 2 &,
, h actual

° Natz.{rally, the\situation will met=maldy be considerably more
complex, for the simple reason that integration in the Egs. repla-

be over

. cing (1.16) will trire—pimoemmith—resogrt—ty a larger number of

variables,
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However, as we shall see further on, despite the necessity of a
considerable technical improvement of the argument given here, its
basis remainé intact.

As has already been mentioned, many works have been devoted to
problems of the analytic continuation of the scattering amplitude.
First of all, mention should be made of the fundamental works of
Heisenberg ( ) which laid out a program for the
direct study of the scattering matrix, which transforms tune
asymptotie part of the incident wave into the asymptotieg§ part
of the Gut%oLna vave, as well as the related investigations of
Ning Hu ( ), van Kampen, M.Ge.Krein( Y. In the
latte;:Tg; investigation was made of the process of the elastic
collision of two particles from the viewpoint of ordinary quantum
mechanics, which is reduced to the problem of the scattering of
one particle :1 a fixed force center. For the f(E), a study was
made here of the component of the scattering amplitude, which
corresponds to a partial wave with a definite angular wmomentum,
chiefly the amplitude of the S-wave.

« The theorems concerning the possibility of an analytic conti-
nuation of the amplitude of S .——scattering, fs(E), onto the upper
half-plane for the case when interaction practically disappears at
distances greater than the radius of a certain "“sphere of action',

odvance
represent an important resuid==rh=smed in this directiona. However,
it turns out that, as W is obvious from the illustrative example
given above, at infinity fS(E) may have an essential ;23§£¥2¥=$y,
which is eliminated only by multiplying by the "cut-off factar”

‘aE

g « Therefore only the following function is regular in the
(2 E

—

upper half-plane % p
$ -
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to which the dispersion relation (1.6) will be applied.

A dispersion relation of this type was recently applied by
Godbel, Karplus, and Ruderman ( ) to elas -
tic scattering of & pi-mesonson nucleons. Utilizing the available
experimental data on s-scattering, these authors arrived at the
interesting result that the radius of meson-nucleon interaction
must be more than 0.1 of the Compton wave length for the meson.

It should, however, be pointed out thatvggg WOorks of=dies i
#ewmed proceed from the scheme of conventional gquantum mechanics,
which does not takéTgocount af the pecullarties %feihs field theory,
for example the possibilities GrneEEEPEENeS oftcreation and
destruction of particles.

The dispersion relations for the scattering of bosons in the
quantum field theory were the subject of investigations of another
trend represented by the works of Geli-ilan, @oeldberger,Thirring,
Karplus, Ruderman, Mgazawa, Oé%e, and others.

. Here,“g:é f(E) a study is ma-
de of the forward scattering amplitude in the laboratory system; an
investigation is made of the problem of its analytic continuation
into the upper half-plane, and convincing S=ﬁ£;§;;:;;;@£aand are

coate . sinqulacity P -
glvenlshow:q that its Aﬂ at infinity will not be stronger
than the pole of &k first order.

A consideration of the forward scattering amplitude is espe-
cially convenient due to the fact that according to the so-called
‘eptical theorem' its imaginary part is proportional tco the total
effmedtne cross-section, that is to a value which emem may be
determnined experimentally. The optical theorem is a consequence of
the unitarity of the ;scdtthziqg matrix and may easily be proven

in the most general forme
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indeed, let us agree to designate by indices « and g the
total se‘t of &% quantum numbers of & comp@awsystem of states.
Then the conditign of the unitarity of the scatt?;by matrix is
written as follows:

Let us assume

. gl . —
JJ(@ = ﬁv{_/} '/_ 2 /_)(/_,
then 7:/

will be proportional to the scattering amplitude for

’
/o

the process < —3 /3 . Substituting /. ; imethe condition
P 1 X,

of unitarity, we find
¢! Z;z =7 <) (f}// /;1 i

In the relation, the 1eft-haﬁa{éide is obviously the imaginary
part of the amplitude of elastic scattering at a zero angle, and %
the right-hand side is proportional to the tctal cross section for
all possible processes,

In the normalization used in the theory of the collision of
particles, the total cross section x(f/  is related to

T g by the equality

- [ . ~ /=)
Ton gté)= amke 708, (1.17)

where Bk is the wave number corresponding to the energy n. The

real part f(E) is then found from the réfadion:

NI ,EIL_ a5 f _ /AT
L’L"'&/Uu t LT T /; = s /| = /\JL /»)'.:Q (1.18)

The first derivation of dispersion relations in the formalism
of the quantum field theory was suggested by Gell-Man, Goldberger,
oafrer
and Thirring y Who made use of Cauchy's theorem .ilmmme

establishing the requisite analytic properties of the forward -

scattering amplitude.
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However, this proof, aég;aé;;sze for particles with a rest mass
different from zero, is not free from objections, the gravity of
which was acknowledged by the authors themselves. Karplus and Ru=-
derman established a dispersion relation which may “e used for the
processes of the scattering of neutral mesons on nucleons; however,
their deduction is based on the analyticity of the scattering ampli%
tude as a preliminary assumption. This assumption should be very

simply obtained as a consequence of a series of theorems concerning

the properties of Green's functions formulated by Nambu {

However, no convincing proof has yet been proposed.

Finally, Goldberger recently attempted to
abandon in general the problem of the anglytic continuation of the
scattering amplitude intoc a complex plane considering the disper-
sion relations simply as certain identities, which follow in purely
algebraic form ﬁé;g the definition of the dispersive and qbsorptive
parts (that correspond to our division of (1.4) into the principal
value and the '§—function) of the scattering amplitude %h;:ggh the

: ovee are exammeol «
sums(with respect to the total system) & intermediate states; Howe-
ver, it is easy to see that the dsfinitions they used are not cor-
rect for E < M , since in this case the respective integrals di-
verge.

Let us =2dd several remarks with respect to the physical
meaning of the values that enter into dispersion weéations of the
type (1.6) or (1.16)). The amplitude of elastic forward scattering

is found in the left-hand parts, and the total cross section is

. ‘qs
o —iQund under_the integral on the right. Both of these qunnﬂ#are

able .
observaﬁ/énly for real particles, i.e. for energies that are po-

sitive and greater than « .« At the same time, integratioh on the
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c . Itd
Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0

-14 -

right-hand sides is extended over all values of energy from - >
to * o . For this reason, in order to make practical use
of the dispersion relations we must get rid sess of integration
a:::;e negative energies and the "non—observ;ékggegion o<Ecm,

Integration with respect to the negative energies may be
eliminated by using the requirement of invariance with respect
to charge conjugation (or, for uncharged fields, - the reality),
which leads to a relation between the scattering amplitude for
negative energy and the conjugate amplitude for positive‘energy°
Yegative energigg may always be eliminated through the use of this
technique, however it leads to "mixing" of cross sections for
antiﬁgrticles ( of opposite charge) inwe the dispersion relations,
which, for exarple, in the case of the scattering of nucleons, is
inconvenient, since the cross sections for antinucleons are as
yet experimentally unknown.

. able

lore compex is the case of the "non—observﬁﬁﬁ}region B Jin
where, as we shall see later, 5- functions J(E‘Epj with & ,
s, correspond?%g possible irntermediate bopd states,arise
under the integral. If such bound states (that are possible in

the problem) have a discrete spectrum, then such integrals are-

s

easily calculated in the explicit form. If, however, the spec

of intermediate states proves continuous at least in any part,

the situation becomes less favorable.

o
’A"‘"‘
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Section 2, Basic Physical Assumptions.

As we have already statedy dispersion relations in the majori-

ty of works are deduced by proceeding from the conventional scheme

of wes quantum field theory,”to be concrete, for example, from

pseudoscalar meson theory,-at times even making use of the argu-

ments of perturbation theory. However, the idea that in actuality

the dispersion relations are in essence not connected with the

whole of conventional formalism and must be obtained bg proceeding

only from certain basic premises (which of course are carried out

in ordinary theory), apparently seems almost trivial. Due to the

extremely fundamental significance of the problem of the applica-

bility of dispersion relations and the po;sibility of their owedd-
R megey generalizations, we want to formulate explicitly the physi=-
) cal principles which are really necessary for their deductione

This we consider all the more important since we hope that a

detailed study of the radiation operators introduced below and

the establishing of relations between them might form the hasis !

of & new approach to the construction of the quantum field

theory as a whole.

The conventional present day scheme*of the quantum field

theory is based essentilly on three basic assumptions: iamilto-
nian formalism, the application of perturbation theory, and the
conceptior of adiabatic switchingbn and off of interaction. Ha-
miltonian formalism automatically leads to the fulfilment of
the strict requirement of causality (since the nonlocal variants
of the theory, which might vilate this requirement, contradict
the condition of the solwability of the equations), however, re=-
cently weighty arguments have appeared concerning the fact that
i, COMSISTOnt
an internally |-cemsmedimedeny theory may not in general be squeezed

.e—=-into the narrow limits of the Hamiltonian methode
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Perturbation theory permits of a practical execution of calcula-

tions; but apparently the corresponding series diverge even in the
©

case of weak coupling, to say nothing of nuclear interaction, when

o ‘

in general,\it isg not applicable. The merit of the conceptéssa of
. @

adiabaticity i; the apparent simplicity of the relations between
actual and free fields.,Since, however, in the far past and in the
far future, the self-action which always exists physically is
sWitched off together with the interaction between bgfticles,tﬁis
conception leads fundamentally to the necessity of. distinguishing
between fictitious and real free particles, and consequently, in
the final analysis, to the whole renormalization ideologye

The general scheme, proposed in 1943 by ileisenberg for ?he
construction of a transition matrix, rejpcﬁed 9ompletely Hamilto-
nian formalism, needed essentially the aE::t:£:§ concept,andihad o
nothing to say about perturbation theory{ Due to its extremely
general character, this statement of the problem havdly ssessisd
lemd to any concrete result;:a:%d it should 'be viewed rather as a
program for the construction of i:n thiesxy, than as a finished
scheme. We should like to point out that while formulatiné.the

basic conditions, which the theory must comply with, Heisenberg

Gid not at all comsider the causality ®equirements, which ( at

2
e

least in the form of the conditiofi of macroscopic causality) the

theory must satisfy.
A theory of the scattering matrix, worked out recently bg one

of the authors (N.N.B ) and Shirkov, was built by proceeding from

These ®
the Heisenberg principles, wismiesl, however, were severely narrowed

by the assumption of expansion in terms of}%oupling conétant, by
accepting the conceptssm of adiabaticity and, what is most import-
ant, by the fact that added to them was the requirement of causa-
1ity pewisbole=wms formulated in the form of a strict condition of

&
®

L)

@
w
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macroscopic causality or locality. It turned out that these assump=-
tions, though limiting greatly the theory, lead to a schemé which

in essence is equivaleni to the ordinary Hamiltonian method and

®differs from it only in the possibility of expounding the material

with greater mathematical claritye.

Attempts have been mad% recently to continue developing the
initial Heisenberg program. The first steps have been directed
towards improving the basic definitions, which are expecially sig-
nificant in the light of the necessitygt- introducmgbound states
into the theory. In this respecty oo the work of
Haag ( ' o 1, ) in which a number of problems

connected wifh the mathematical formulation of the requirements of

relativistic invariasnce and the procedure of secondemy gquantization

have been elaborated. s of wmper¥ance,

From the point of view of conventional field theory, the method
of introducing bounibstates into the Heisenberg scheme is not ob-
vious:.if we ao not resort again to the adiabatic switching off of
ihteraction, the particles that form the bound state are allf%he
time cloée to each other, whereas in the Heisenberg statement of
the problem, all the particles ir the initial state must be spa-
tially separated. A way out will be found if we consider each

concrete bound state as a particle of a new type and if instead of

s e - . . w e e ey . . o . s n
*speaking about :the formation of a bound state we will speak of

the annihilation of the initial elementary particles and the
wme creation of a new 'complex' particle. Naturally, in such an
approach there arises a very complicated problem,; that of descri®
bing the interaction between this large number of cowplex parti-
cles newly introduced. Here we shall not attempt to deal with

this problem.

@ 2e ©
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5

0 describe

Now the question immediately arises as to how
the initial states of spatially separated particles. Ve may re-

call that in conventional theory, when the possibility of bound

states is neglected, the total Hamiltonian H may be divided into

the 'kinetic energy' part Ho, and the interaction part V; and the
initiel states, no matter how many free particles there were in

them, are eigenfunctions of Hoo However, in such a division both

the seIf-::zzgﬁ'(due to which the particles in the initial state }
prove to be not real, but fictitious free particles) and that ’
part of the interaction, thanks to which the complex particles

exist, are thrown out of Ho' Ho will not have such particles. Z
Yow we want to isolate HO, the eigenfunctions cf which are the

initial states such that both of these unpleasant facts may be

avoided. This may be achieved with the aid of the following conese

struction { )z
Let us consider Q system described by the total Hamiltonian H
(we make the construction by proceeding from the comrespondence
principle with the conventional theory). lLet us designate by Rl the
space of all single~particle eigenstates, i.e. such states, in which

there is only one real elementary particle. If the Hamiltonian under

then have also eigenstates, in which there is one bound complex of
2y340.0 real elementary particles. The spaceé Spanned 65 such states -
we shall designate by 22, R3"" respectively. We may note that the
bas's stat g m.y e Spam"&b
ates g the spaces Ry, RQS'TT?TE§§~Be characterized
as single-particle ones. We have in view here two peculiarities of
such states: 1) from the point of view of their observation they
- have a certain degree of localization (Compare the clever determi-

nation through a series of mental experiments by Haag} ( )L
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2) they are stable.

2

The spac%i the vectors of which may be considered as functions
describing the initial (or final) states we need, which states cor—
respond to any number of mutually non-interacting (due to gpatial
separation) particles, will in this case be obtained obviously, as
a direct product of all spaces Rl’ 32... and each of these factors
may entef into this product an arbitrary number of times in accor-

dance with the fact that in the initial state there may be an ar-

bitrary number of particles of each type;

Rz RyxRy xRk &Ry x Ry Koo AR, X (2.1)

K

A 'free' Hamiltonian, thé eigenfunctions of which are functions
that describe the initial state of the mutually non-interacting par-
ticles, may be c;nstructed as follows; Let us introduce the operators
for projecting the Hamiltonian H énto the spaces Ro’ Rl"”" Rk,....
- operators F ,Piyeces Pryees, and determine the 'free' Hamiltonian

HO as a direét sum
oz PoH P EP H b P H E P HE (2.2)

Then the total Hamiltonian H may be written as

~ ’

O L S L Y (2.3)
The intgractipn Hamiltonian V now describes precisely oﬁly the
mutual m of the particles, but not the self-w, which,due
to the selected method of conétruction, is entirely contéiﬁédwin iﬁé
Hamiltonian Ho' To be more precise, V even describes only that part
of the interaction which is responsible for the processes of scatte-
ring and cﬁg%ioh of particles inasmuch as the interaction that holds
the elementary particles in the complexes ('complex particles') has
also been already,pushed”into HO. For this reason, when considering

limit transitions to the initial or final state, t & T &< y We

may deal with the interaction V without any special care, for examp-

L3
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le, we may sjmply utilize the adiabatic switching off, because now
this will not léad either to the disappearance of self—gg;ggn or to
the disintegration of the bound states.

The references, made in the preceding construction, to the Ha-
miltonian and to conventional theory were of course of a purely il-
lustrative character and were aimed at making the explanation as clear
as possible and also at connecting it up with that which is generally
accepted. This construction should be considered only as an example
of how, proceding from conwentional theory, it might be possible to
a;::gte several of the basic physical assumptions the formulation of
which we shall now undertake. We should like to point out that alt-
hough on the one hand allfthese assumptions are complied with in
conventional theory, we do not believe that they fully exHaust its
content., Let us leave this extremely interestimg question open. In
the same way we shall not attempt to solve the more general problem

consistant
of whether our assumptions form, to any extent, a reRCEEbeddesbery,
independent and full system of axioms; these assumptions should be
viewed not as an attempt to create such a system in the meaning
that mathematicians attribute to this concept, but simply as a col-
lection of suppositions which we required for the construction of the
derivation of dispersion relations.

It is convenient to divide all of our assumptions ixto two groups

. . L Necessury
general properties which in our opinion are oslsgedmesy for an extre-—

mely broad class of possible theories, and thae speciéfﬁﬁ%perties,
doswitias, that are connected with the requirement that we impose
concerning the fulfilment of microscopical causality. From our point
of view, this latter group of requirements is necessary in order to

obtain ordinary type dispersion relations.

l. General Properties.

l. In accordance with the above, we accept the Heisenberg sta-

tement of the problem: we shall consider that the asyuptotic states
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of the system represent totalities of a certain number of elementary
and corple Pmtdﬁt,s infinitely distant from each other. The interac-
tion between these particles is equal to zero, and for this reason
such Wui*d’m as energy, momentum, etc. are additive. Such states
are described by the amplitudes [ > , which are elements of 1li-
near spacé?dwhich one may conjecture as belng constructed with the
aid of the method described abovek.

2. We shall consider that we have a certain group G of transfox-
mations 1, which includes as a subgroup the Lorentz group %; (G may

include also other tran$formations, for example, isotopiced or gea-—

%\Lﬁ%ﬁ

it transformations, etc.). Under the action of L from G, the sta-
) asmma

te amplitudes are transformed wisbhmebissmaisies? 2 certain unitary re-—

O$ L. 'v‘/
presentation s with elements Uh;”

x/ }
1 ov with the argument of Haag. ( N
itIghggﬁéO%g gotéd that %GI one-particle states, U; form irredu-

cible representations of group G. Further, from tﬁe construction
performed above it should be possible to establish that for anz
asymptotic state (insofar as it is always yepresented by a vector
in the direct product space) the infinit651m§l operator U¥ is a
direct sum of the infinitesimal operators y' , that corY¥espond
to the irreducible representations. llence, in particular, there
would then follow the statement made above concerning the additi-
vity of the integrals of motione

3, If in the state |p> the vector of four-momentum p has

a deginite meaning, then
/

U, lp>=¢e  ir> (2.4)
a

Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0




m

Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0

- 22 -
if La is the translation X=> X+a .There exists a
state [0 , for which
ULA IJB = O (2.5)

m-the vacuum state,
Similar properties may be formulated also for other subgroups
G, for example, for representations that correspond to the}"shentumt
4, There exists a system of eigenstate amplitudes of four -
momentum, wiEtah correspond?%g non-negative values of energy, which

is complete, so that

&lABley = ALY ColBR> + g ]J“(JIA|M><""“314> (2.6)
Here n signifies the set of all the remaining quantum numbers
' Bgedhan.

which in j i with k fully characterize the state.

5. The subject of the theory is the study of “the probabilities
of transitions between such asymptotic states. We shall assume that

each transition between states [d > and fﬂ;> corresponds
Yo a definite probability, which is expressed in

the usual manner by the elements, S“ﬁ , of a certain unitary

o -
-

Z AW (‘Slhg\ = C):x""-
bl L U A il (2.7)

the elements of which may be regarded as the mean

matrix

values of a certain operator S:

\Sdp___:\",z}‘;)l'ﬂ> , { 2.8)

6. Since we consider single-particle states as the states of
real particles, our single-particle states and the vacuum will be

stable, i.e.

2> =1L D

(2.9)
rw__';gdwf
if l:lj) is the |se [state| of the gacuum, of one ele-

mentary particle or one component particle.
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Before passing on to a description of special local properties,

e

we shall add the following remarks,

It is obvious firstfall that our asyumptotic states that cor-
respond to the presence of a definite number n particles of defini-
te types «; with definite momenta p‘ may be obtained @é - intro-
duc\e‘-{n the usual way creation operators a,( ,{P)and destruction

operators d (P‘)of particles of type X; with the momentum P s
QQCA—M

and usmthem to &t on thewgﬁﬁs}m sta‘ce},aﬁ-ihr—nmn

A lr) L)

, ‘ NS
= "‘la!\ (\0,) 'lx /

Clpa) [0

(2.10)
amd ¥rom the circumstance that our space-divided particles do not
oy (#) o (=)
interact, it will follow that the operators a'’ , A ’ satisfy

the usual commutatiorn relations — -

) /- _e) ] \ RIS
| @y (B), A C(p) = Dy 5 (PP

5(Qp) ‘ :{( ):* =0 / (2.11)

From property (2) it will then follow that

.
. /*(-/ -~ .
tion & LJfrsm G the operators A;(F) will be transformed into

). &) ., B
QS (p) > G, lp)= U a, (o, (2.12)

In order to be able to formulate the causality condition (and
in general discuss the local properties of the theory), we will
obviously have to learn somehow to distinguish the individual -

points of wme space-time. For this purpose we shall construct e
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°U°* :& ;o C
the creation and destruction operators @ elementary particles

the usual space-localized combintaions:

B>

V. " "/t»( ' )

i Ao mess /

plx) = TL‘S/ . ) £ a8 6’1{)('/2))’
(42) ZJ\)z"° Z (2.13)

K=+ ztime!

where, in order not to make the explanation.cumbersome, we wrote
out the formula relating to the real scalar field. It is precisely
at this point that we meet for the first time the difference bet-,

ween the elementary and the compaund particles. Although for the

latter it would be possible to introduce formally the definition
of the type (2.13), the physical meaning of such combinations .
would be rather cumbersome. . .
Further development in conventional theory may be condﬁcteq
in approximately the following manner. The.scé%tgring matrix S
may always be thought of as being #m a series of'creation and
destruction operators: .
> S € \
5= [di - Ai 2 A 25 (7).
E mzo o

. - - _ (t) o~ 2.14)
caey Al )2 UR ) 1T R (

(for the sake of simplicity, we shall agree temorarily that we*
are working with garticles of one type). Such an expansion migh¢'

be rewritten with the aid of (2.13) as an“é%bansionmggmtg;gsVpgu h_*xﬁ;

the normal products of the fields (x) =

0
~ X7 7 ! pEN 3 ,
3= jg}%,‘_,ﬂiﬂ £ X ) ipla) . xS
- (2.15)
h=zo
+won Define the formation of the variational derivative of the 7

e
~r

S matrix with respect to the field %fx)) by the folio—

;7;%; )
wing operation: The sum is taken of all the expressions obtained
from each term (2.15) by consecutive cancellation of one Sumew,

i) y it being substituted by S x- % ).

e “F
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Then the matrix elements of the scattering matrix

N

- ol T A R .
J(ww/ = B/ Paddy| S [P, Pty D

(2.16)

\ might be reduced to the vacuum expectation values of the "radia-

",

’ * “tion operators"
"
Hix,.., ) = -____-.__;;d,_/ o
| .3t lx (2.17)
e C qdeed, i v;.r‘tue of (2.10) the matrix element (2.16) may
be rewritten as
,'1' P ‘,_) -_I' // l. |
(\/~>/ J"J(‘( _(pl/—. ’{ / (/Ug J/ v (ja/ //;7’ (/7//) > (2.18)

Again, llrniting ourselves, for the sake of s:;.mpllclty, td the case

of real, scalar fields, we may note that from (2.11), (2.13) we

obtain’® . - ' X v
' s S
iy “ i
( t) Yrf -~ 1 !
(P [)t) 1 "”_%7 - T . /
LZ’U 4 \/- /\,/J
. A + ll/j X
. — * e S
RSP o ' o > (2.19)
| QLURD, gl | = = o
L i J ; 3 R !
i ) v ) o !
. \ ter

e . = coe e s basimesmies me s S s A i e

where ,'7 ‘f‘ ,lp Fme —

whence follows imnediately for the commutation relations of the

creatlon and destruction operators with the scattering matrix:

Tat @1 ' e / - x y
= | [p), = — &zf X — £ )
f\ )5 Qe AR
[0} \ N~
’ s 2 X 7 2.20)
R TV B Er N S ;- (2.20
L al )y | = 5, | A x == < |
w7 [27)% S (e u2p
€ ' where again
» U .
Pt e /
® o
® (]
® ® )
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i - e
If we now transfer i: (2.18) "to the lg{@:@§99“§§§@ all the

creation operators{éthQAé destruction operators to the right,
where, acting én the vacuum func%ion)they give zero, we shall
immediately findy( we assumg that all the momenta EIM.,EQ and
Pryeee s Py are different, otherwise there would arise more terms
of the same type, but?&ess degree) that (2,16) may be written in

the form of an integral

S 3
i )

4 S ! j
) = e — ,h ! N /(( - .
Moot 3 (2¢5) | %wX, 1 ’(1_ o 2“.,,« - B ;
" i P ) =T .
N ) j/ ;wmﬁﬁ pz’ s (2.91)
\\ I 24 ’J { 4
N wJ
//‘\y ’ R - - \ \\,\ .
: g S e 2 { ."J/ , 3 — J o,
\ \ E?FI( u/:).jffll \x2)>7/f|(1‘)“‘ ) Tjr_ . )) i Ve
. agZ1)

T Z" ’;
P[ =t ;‘.‘7. My /

Y,
Under the integral in (2.21) ‘are precisely those vacuum expecta-
tion values of the radiation operators of (Z.17) that have just

been determined. Indeed, in virtue of the condition of stability

of the vacuum in 1.6 we find:

ALY
- /

AQ2tn) . !
CA 3 AR N T'”f’ N
b= 1 D T D) e A (2.22)
V3 ) ) 2 Loy S dpwyi V7
e ,‘,_. OIS AT ,,\._.r‘f: S [ A o f‘. 4 -':,.5.-.)") e P

We may, however, hote that this deduction was made a little
too hastily and that we did not follow the actual meaning of the
operations with sufficient care. First of all (2.13) cannot,gene-
rally speaking, be solved with respect to a2t/ since this
expression defines not an arbitrary ¥/ but only the #£(*/

that necessarily satisfies the equation

Y
)

/
/

21\1~V\Ai )[.’7"'{) = o v
N * . (2.23)

5
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For this reason, from (2.14) we cannot obtain (2.15), the functio=
nal determined for a broader class of operator functions *W/x) ’
which do not necessarily satisfy the equation (2.23). Further, we
might seem to have indicated arbitrarily the rule of variational
differentiation with respect to & /x) o Finally, the commutation
relations (2,19) are obtained from (2.11,13), again only for such

qw%/ as satisfy the equation (2.23). We however used them for
an arbitrary %(x/ «

In essence, the meaning of the transformation was that we
actually extended the definition of the S matrix, removing in
(2.15) the restriction of (2.23) and considering the scattering
matrix as a functional of arbitrary but commuting ( or, for fermion
fields, anticommuting) Yox) Xt). Qnd all that we shall need
for further investigation is the commutation relations (2.19) of
these functiofis with the creation‘aﬁd destruction operators that
make it possible to establish (2.30) and in this éuy the rule for
reducing any matrix elements of the Jcaftéeiqy matrix to the vacuunx
expectation values of the radiation operators. For this reason, we
shall not refer any more to the analogy of conventional theory, bdut

simply require the fulfilment of the following:

2. lLocal Properties

1. délementary particles are characterized by boson and fermion
fields « (x) with the ordinary transformation propertie§ of
e ) -
free fields.lOperator S possesses variational derivatives of any

w /
order with respect to these fields™ . Radiation operators (2.17)

X/Here, the variétional derivatives have all of their usual pro-—-
perties. Their transformation character is determined by the trans-
formation character of the fields ¢/ . The derivatives of the
S-matrix with respect to boson fields commute, whereas with respect
to the ferwion fields they anticommute among themselves,

xx/

It should be emphasized that such an extension does not carry
us out of the fremework of conventional theory. Indeed,
in the usual theory "fields" Yo (X) play a double role:
firstly, the operator: S itself is considered to be a functional
of these fields, and secondly, the creation and destruction ope-
rators  a®) that correspond to the fields serve in the calcu-
lation of the matrix elements of this operator. And in the first
case, the fields always stands in the chronological or normal
products and therefore commute (anticommute) each with the other.
In addition, in this case taking variation no restrictions are
imposed that are connected with the regquirement that the fields
havimg to satisfy some equations. Actually, this is equivealent to
the assumption that the S-matrix is considered to be a functional
of arbitrary classical functions , ¢}(x), - which precisely
conmute (anticoumute) and which have only transformation proper-
ties of quantized fields. On the contrary, when calculating mat-
rix elerments it is essential that a®®/  be operators with the
properties of (2.19).

& e
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and their products with independent arguments are integrablelthat
is all the matrix elements

<W }}“{({,,)/“) ['/((211"';Eu.) /CL)’ >

.\i-'ﬂllls
are integrable functions timmf‘belong to one of the classes,
(see (1.1), §1.2) ).
2. The oaui?%ity condition is fulfilled in the form
(35 ¢F)=0

= Ty 9 = for X<y (2.24)

Q) \ Bew)
This causality condition is absolutely analogous to that used by
Bogoliubov and Shirkov ( : Y

to which we refer the reader as regards an explanation of its

physical meaning.

3. The matrix:elements cf, the scatting matrix may be transfor-

expectation velue
rmed into the vacuum Me”TF of radission operators by using the for-
mal relations Y
Tatis woie ‘ ’;V' £
| QI{/U,LF(“Q F— — it
- R ’ii)"/-’» N Z s 7

" PX

- — 4.0

j - P . e #

S DECTIY ) BT SE

/ J_ b e
- )R det
(2.25)
P": ;"i'f)‘“uL ;

and analogous relations for fermions +)

. = g ’1—;:77‘:7 Cat !

ALpt), e, = e P sy

- - i T P eptemt

L )'le )
- . ~(2.26)
e NP ] (r) | i
‘ / Yo%) . 4 =) vy -
a_éh“x"/’ 5 )4+ AR PANE
- #,_ UBLR) i |
Y ! f ' - AN - 5 i
| ")}/“‘), ’)4,> l,/ - - - ’)‘):f\jpzf/"“" ]
_ ~+ L) Ve
= %
= s E .
#

. e
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Sec.2. Basic Assumptions

o

;ﬁ

x/
Given below for reference are the main equations for a spinor
i field, which conditions are fulfilled in the conventional theory

of a free field in our notations. For the field operator %Gy we
write the expansion

6 e X (+) /-
ver- L [dz J & uPR) b (D)
%)

“ 5 / (2.27)

S Sy S - > =

P Ul R) Baus (2 (

!
K= «+ vV girM? j
whers £, ol and ‘s' are quantum numbers that define the particle-

- antiparticle, the spin and isotopic state; «, are the L
creation and destruction operators of the fermion in the rexpective +
state; W™ are the respective spinor amplitudes, Then for ey
the Dirac-conjugated operator Y (x)we obtain the expansion: -,
= Lo g d ot T35 my 2 o

X) = — i {2 )
Vk() a)% JAK 1 Uy (%) ©us (£) + /
DK ) ) {
ol & _ V2 - Lo, B
+ & Uz () 6 . () 7 /’“ (3.28)
K=+ [ Zeput y

The creation and destruction operators satisfy the anti -
cormrutation relations:

— (_) — (f) - 7—1 - ‘ ‘7 o .
Lgrazs ‘/M), g_f’gg’;l (’él)./ = ::zz)lz)ldju,)“., d7uz-z7 (2.29) -
: .

‘the remaining anticommutators being equal to zero. There are the
tion .

N AAMmSrradtd A .
13 vian Cléngjugaiicn:

rela s of Hermitis
/ ) * (*)w, /, ) * ﬂ(_) '
i (=~ [ - ',ﬂ /’_\ , f/‘ s - {'/) IZ ; _
&@4-45 \M>> = '5+.¢3 \k)/\a_“(%)> - () (2-30)
Vo,
From the fact thatvﬁgzggsatisfies the Dirac equation
‘. 39 /
[ 5 M) wly=0 (2.31)

rove v fl I
it follows tkhat the amplitudes «~*°
the momentum representation

(’M-M)u*'“(i):o y u‘“’“(ni)(d/"-'é-/w):o/' Koz ¢ JZTr M2

satisfy the equations in
¢ N

i

> (2.,32)
and

e — P , | . rf*’ﬂ (t
G- M) W R )zo TS k) (teem) 2 0K -Vt

3
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Sec.2.Basic Assumptions

In addition to the expansions (2.27), (2.28) we sha
it convenient to make use of the Fourier transformations

, [ -cPX ‘ (2.33)
’ 'V/( (;():.' ’,?_{;«:)L’ .S g 43 &/P) d’P ‘
' and ’ = | px

= / rpt g ip)d P

\Vﬁ \X) = CL;}* ) C ‘Hﬁ \P) [O (2._’)4-)

in which it is not assumed that ¥¢x) and¥i(y satisfy any equa-

tions and, cory spondingly, all four components of the momentum -
are considereafgndependnnt. For the functions that satisfy (2.31)

the operators %x(n) and#/(pare related with the operators .!”/qv

by the following relations

t A y
Yolpy = a) (hn)e 8 [p2 Frems? ") ut s 8, PRCINE
" s (+) 7 (2»35)

3, —1 - - 4 5 i

Flir ) La )3 (o JgtekE ) UiT(F) Do AL

- _ -  (t) N ,
and T (p)= e (32 (g2 gkt ) (, Sui P+ |

% 0/ 0% (7ot oy 7 (2436)
) 5 p? riFest )/1 ) O -p) J

From the expansions (2.27) and {2.28) and the anticommuta-
tors (2.29) we at once obtain the anticommutators (2.26) $OS tu=
lated in the text. Iet us now add the egquations for the pe:x

tne equations for the y\,.uuutu <

:ions of the destruction and creation operators of particles with
“e urans1t10n matﬁ;x ) ‘;; N
[ 5u )( *5 . p ’.‘u‘x ,_\__ ‘
+“’"’) ) o A ) Y Pelx)
~ plt) (¢) a7 . P
/Q '_74,‘ e )' = «5{_)( f’;(// /‘*'r‘ ‘p}‘ ;"_,J— : (d-37)
. J e Ty o

It should be noted that as distinguished from the boson fields,
when the equations (2. 20; were equally applicaBle beth to the S
matrix itself and to any one of its variaticnal derivatives, (2.37)
are applicable only to the S matrix itself; to take the succeed—
ing variations with respect to the fermion field, the necessary
equaticns have to be derived anew due to the antlcommutativity of
the variations,

e

&

@
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Sec.2. Basic Assumptions

It should be noted in concluding that for the calculation of any
matrix elements of the S -matrix we ought to have some analogous
rules also for the transformation of matrix elements into radiation
operators with respect to states ;::E:EEES complex particles. This
is a very interesting and important problem, but it could form the
subject ¢f an independent investigation and so we shall not deal

with it here. Fortunately, we shall not have to solve this problem

in order tc derive the more interesting dispersion relations,
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@

Rediation Qperstors

Ir the preceding scection we introduced

distion operstors of different orders.

wore detoil. First o7 o1ll, it

sideration more concrete by ra:

some definite fields., Maving in

hea ocession to point out) that the

theory, «¢ shall select the

naclson end wagon fisldd., itk
2s definite =: possible we shall

only of isotoplic inverient

sccount oresence of

light prriicl:

As usuanl, we

The ..eson field we sneall consider
pseudoscalar cowponents 4@(x) t
And, =« the

nanel,

-t
V2

porticlec

) - =

'\P T ¢
=

N 2.
B

will bc opposed to the

Py

of a resl representstion (althougi 23

is not obligetory) will simplify
We ghall coasider that group

Lorentz

fermion

“trensforustion of

P

Yx) = ey - 4 =rowt

—_89—
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The opevators of the first order are the siuwplest radistion

&

soperators. Due to the fact thet resl qzlx) were selected, there
will be three such operstors (in plsce of four otherwise):

. %S g+

Jr()( =leg = S*, ﬂ(X)'-iSS +

"(x)=l.:“;x) ) TTleS= ST (3.4)

S\?,,(K) 0 oY

We §ﬂ91L c=211 thege three operators cur:

the first one s

bos@a carrent, ~ad the

th‘) sf S and the regl-

Tervitian. Indeed,

Juzsation, w2 obtsin

' : b () = i E\PS;()
. but S S*.__ 1 anfl therst 31‘
e o Squo . EW}R) '
: Jf (x) ¢oincides witthOd:

- . J;(X)':Jf(x) (3.5)

The gpestion of thne Hermitian properties of ferwmion currents will

be treated in the next sction.

it is essentiai here to aote thet the element s

bicall coyaq )

of the cuarrent osperastors ars iden

<O'Jf(,()lo =0 :<O|a(><”0>’-‘0,<0|ﬂ()£)l0>:O (%.6)

o “

*of 'seenmptidn’ 1.6 ond atilizings the trans-

Indeed;. ..

formation 2.3 (Sec.?2) such mstrix elements reduce Lo matrix eleuments

of the type

Zola'™| o>

e e

The tori, 'current'. is baced on the =nalopgy 9F serturbation theory,

-
P

oxiwntion is

r

where the first of these operetors in tac firet

proportional simply to ‘ngifﬂj , the current of non-interaction

of fermion particles. However, the words 'bos€@e' =nd 'farufam® arec

used there in 2 slightly unusual sense; the, indicate the field in

! which variation was conducted.

@

s
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- -

which are obviously egqusl to zero in virtue of the definition of

_ X (%) . .
the vacanns { (L ar& crestion/dectraoction aoneretne of boanns or

ferawions)

= second order -
In our cese, taere may be vcix¥redistion Operstors. The vecuawd
- expectation values of foar oFf thew sre eqnal 0 sern on the Sawme
. groan”s:

\

. + Y -
lb\P,,(x)SWg) 02=0,; <O)m S IO>'0

—
(N
.
-3
ot

¥S g
M iﬁle)Sw;)_ }O> O;(Ol- 5+‘O>=O

Indeed, our arpu.ent wey bo annlied dir-etiy to the wixed voson=-
3 J P

i

h

foruet

fernion dsravativ

ion into =z sam

AF e ot
Lo

of matrix elemcnt =t ion =na destraction

s

retors, =29ch tevw bso one feraion =nd une boson

op

wn

er«tor, which

sct in different sp=cos, -ond for thic ree-son =ach wetrix elaments
way be writtea in the forw of direct groductc of watrix slawsnts

frou single operstors. As concerns Hiha douable

+ in 4

X .. f
It way to noted kLere that slresdy frow cousiderstions of transle

to conclude a2t once that the

tion inveriencs it wight be p

i

watrix elewents (.5.9)7should oe coastant. In our eoncret: case, we

wigsht even go farther and conclade thst the § of fihwoe matrix

i

elewente wers eyual to uero duc Lo tre invarloace sith spect bo

pace reflections, rnd the other two dac to invsasrisnce with respect

to grejient traasforumstions(3.3). However, in the csse, for exauple,

of the derivetive with vecgsct to the neutr=l zceoler fizld, consi-
derations of covarisnce w>ruld not be safiicient to conclude that )

the watrix elawzats (3.6) are eqaal to zero.
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_36’_
after the transition to the creation and destruction operators the

sws way contain either toris with two crestion/ destruction operas-

o
& a8

tors, oobviously equaal to zero, or terws with two difrerent opera-
tors. But in the latter case, these will necessarily ve, Tor the
ngtrix elementes of (3%, ¢ £ wnich belongs to
the particle, -nd the h k ne a, in other words
210 ecting ecoo bi-lly ir b ey s AN sgal arguicent
i )

we were interected only ir scuitti eXxuvectation vslues

frow r=distion operastors, ve wiuld heve %o xemine suly two overa—

s
Sy ()3 ()

2%S
oY (x)Swiy)

As we shall see lster, 16 will aiso de suflicilent for as (in orde=
to deduce théudiSQSTSiDh reletions of wmeson-nucleion SCﬂtﬁeriné) to
exauine only the radistion operator
ite wetrix o
régson / ;nai} 0% GLECU in wore « a1l this latter overastor. It
should be xeyst in ] mller dnvectigation for other ra-
distion overstors oF bie order would =upesr to Ye neerly the
srie.

in order Lo weose clear the idea of the cowputatinas we plan,let
it ve recalled thot, ne we already wnow (Jee balow, hthe end of %80-4)
the vacinuw exyectation velue of o roqiption opersbor (3..) coincides
essentizlly with Green's function for bosqés, i.2. #ith the vacaum
expectation velue of the i—prodact of two operstore of the "real”

boson field.
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_36_

On the other hend, a considerstion, in the free field theory, not
only of the T-prodgat but =lso of sther various products is very
aseful. It leade to the introduction of other singular functions in
addition to the causal function. ‘e should like to do the ssme
thing here, i.e. introdace, in edditica to the rrdistion operator
(3.8), other operstors conascted ¢ith it in the seme yay 28 various
singular fuactions of the free field ars zconnectad wibth the caussl

function. M™he intyod

of sach apers

‘111 wrove extreunsly
aseful Tor further investizatinn.
For this parpose les us now c=lealate v varintiosa derivative

of ths currea’ operstor introduccd s=bove F3.4,1%. We obtain:
_ Sleto _§%s 4,8 ss? 5100
3¥p(y) oot (0} DFplY) Fpitd)  E,ty) ;

where one of fbhne terus at the right coindidus with the redistion

o~

operstor (3.8). The second terwm =t the right way be expressed by the
prodact of the two current operators, after wnich we arrive at the
ratis wlation -
ZS < *
S o+ < . o (%)
5:-4:(;()(} ()~—Lii1’___
ST g pld - (3.11)
S0 Bfply) T fptyy)

The left-head cide o

Hh

(3.11) is syzmetric ~1%

-

n resoect to the ger—
mutation of q%l(X) and KFP(g) . Therefors, if ve execcate this
permutetion we will obt=in one wore expression for this soue
operator (3.95): :
2 : . ’
,lS__.__5+-:_'~()»‘,1x,l _ ety ﬂ
S ()5 Pyl) t74{r 3y () (3.12)
pr(x) 0 ¥yly y
Certain individual térms in the right-haid osrts of therse expressioms

are awong those new operators wnich we intend to introduce.

k2

&8

)l
® L) )
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- 3; -

It is not difficult to grasp fhe weaning of the operators in-
troduccd. Tndeed, the first fterws in the ripht-hand nsrts (3.11,12)
are siwmply prodacts of carrvonte, that is, operstors which should
becouwe analogous to the siagular functions D("’qnd D(*) 2T the
free field theory. Below, when vwe exeuine their wmetrix clements ws
shaall see in whet sense they actauslly cont=in only the freguencies
Oi one sign. -

In order tn deterwine the ueening of the cecond teris in (3,11,
12) let us igz:ﬁi4thQu &y‘the S mateix o4 tarn to tue condition of I
ceuse¢ity‘<§ﬁi*7?é¢ffén 2 ’ Vo e will then rec thot
_ngr'w Y ( sS ~+) S0 7 Yo x

T T Sty (S > ) T 9 F dES 313,

-ﬂiz gl _ > (25 5*} -0 if x& (3.14)

P'(‘) S\ffl("} \g‘fpfy) . v )
that is, oper-tors _{‘QJRWR) and  — §g§£ﬁ2

¥ () 5 Ppr (x)
behave just s= the =2dvonced and delayed Green's functions.
.- If we now tsike account of the rétionﬁ {3.13), (3.14), then from
(1.11,12) we will obtain
2 A\l £ ,
% > S+= ’“"(x)dfly) when )(ZQA .
S\Pr' u)%?p l‘J) % (3' iS-') >

._Jrly) Jf'(x) .hﬂ y ,Z’

S St T ([t iy
S 00T¥p(y) dpr X fpld /J (3.15)

as we expected frow the vermy begiﬂniag‘.

b'e . ) . .
It should be pointed out thet equaticns (3.15'), which are actually
a definition of the T-prodact in (3.1%), dekeruine it only for X1=j

For x=y, the vatue of (3.15) remains indefinite, which fact will tell

. =

later on in the possibility of adding certain arbitrary pal&ngmia}s

to the respective Fourier transforus.

»
]

@

Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0



Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-O143R00030060017-0

@

_39_

Pinally,if in (3.11,12) we carry out snti-symcetrization and
syumetrization, we will ervive at cowbin=etions thst sre gimilar to

(1)
the singular functions :D and 59 H

S (X) g;é ‘ ‘ -1 ot (7 16
Ty R (x) =4y X plyg) = dplgljpr™) )

and

a5°S ASTERY O
fj’ (x)fsty) Hplg) jpr(¥)= NW WG S Sy ry) (3:17)

' » o . o , ) in poeticular
If ve bake scoount ol {3.13%,14), 1t follows frow {3.10), Zoay 1R 2P Yy,

that

o
~

. - \“ _ o K - 12 I
{}?l(x)’JP(y)j - O ior )(~€{’e€(>( k\;J"/<0\5-l
l.e. thet for the radiation operstor gwhich ie siwilar to the D-Ffunc-

tionf&its wost important praperty {tnzt of being convertzd iato zero

oateide ths light cone% Ve shoilda liae to ewmphasize
here thst this pecallarit, is due entircly S0 ths causnlity renui-

rerent that we ilacosed (2.2 frow Tec.2). 2 nuauber of

aathors Y used

precigely thic requireuent as a ceus~lity condition in the deduction

of dir

Leter on wve ehnll e2loo need the relstion
S har(x) /
_ e (5
the validity of which becowes obvious if we recall that both

Jlf' (’() and kfp(y) are [ eruitian.

(3.19)

®
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Let a= now proca2:d to sstadlish the of "zete, whech Tor the

i ’
matriv elements of the radiation operators wish rossecl to my =ta-
Tes, Tollow oo ' reguircments of fpenti-fisa iaverinszce. It is a
. vell-saown 7 tast Tor tun T azerastors of the

second order woth re o vecine $hls -~ ot Lo s t0

— ajtiiat ins g & ot o'y 1 + ! i
citusting v b AT > i : pil; oo by rence
X=y. f0 Lor webelx wisments wibhov et b 1, Leoy, oz oeitastion

3 e S TR A T -~ T a . . . B
ic slightly wovre conulox, =2lbtnoush in escaeacs % peoal

Covicu=ly it iz =4

tion of aiebriz cl-asats vYith reo

hiie =eccumntion 1.4 in Se20.2,forms

S\P,.(x)w,la' .
 3°S + .
(U S S .

<ps io‘P (x)%\?;»l;j ’ -
[a virtue of the translastion invaria=nse 1

5

| A
{p's’ iw ()3 Fpl ) IS

. =y i e gzd C+r.c,?q‘ﬁ=;,>:,,
¢ SEpo-a)shpga) > - ] :
Pl 2
=€ </°'5/‘%' S 3+1PS>
. SYp' (x-a)o fp(y- a)
where is the operstor of the totel foar—.cwintaw, mie cslf-stotes

of which, according to the ssswewwbion, =re the stetoes l ps;> ﬂnd.'ﬂ59

. . , xX+Y
Selecting now'=' cguel to 3z reosge tuol bae vowralor nader the

gign of the watrix element proves o be deo.ndiat only on the

differance (x-y). Therefore WE way write:

3
A

S* IPS>-—L€ <

(x*y)

2 .S —~ () p
( 1.0 w (x- ) (3%.20)
| <p] S (T3 (y) fa (4
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- 40

where the fector & is addsd frow coned

“tionc 5f correapondence

with Lhie defiaibion of bthe singuler Tunctions Tor 2 frece fieid.

. . . ] )
The srue is desiensted by the sizn(0)in w(c)

The ma vis clawents =2lso for ostuar rod

hion oaerstors of the

sacond order war be yaorescabed Ia sysetly hhe Geme geus

' %hg PP (x+y) wt
pst T () ps> =-€''= R (o), £5001)

1 lu adv
%h(x h) S= o (xfy)F:( d (-y) ,

%‘P (y)
¢ e ‘df"’dJr[?f, Jfly’&f'()()l}).S/:—_ ey { E[E,“y,
'—‘E()uyl ~
Pl i) "‘fr’éﬂd}"’!)l ps e e S A A

FLooo (%~ ¥/ (3.23)

. bl

.’<P|5|I )’(3) '(x) l _ fl "——E(HHI —_ (3.25)

E%}wx) S‘{plg)l

In esuatinas (35.20-25), Ffor &ne crae of broviz, e =0t of

indigce= PPy S is designsted o ol . oon of .P"P,I ! by
.,

For the currant aroducts one mnmy, of coarce, rewrite the
exgpreseions thol fene eccount ol troesooflion Lover tH
P ( _ f—-B(n;)

P 'Jl" x)& (y) ”35, =L € F,Lu, (x-y) 5. 06

<r5urlald\r.(x)lr3 PLE.

dowevar, we way go furtpev still ond detaerains tie otraotare 2f tae
(-?
function W in wore det=il. “recisels vicsure 2F apcauption

1.4 of Sec. 2 concerniaig tre comaletness o0 She aystow ot functions

with definife coueate, se an; expand bhe us'rv.og t o1 the left-

hend side (3.76) intn a product oFf Lhe wabr.x sicuwonts o7 *he
current *
*
@
® -
E s

Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0




Sanitized Copy Approvéd for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0

- 44 -

&
1! : N - 5
Lp's ,éf"()() }),(‘3)\ pS7=
f“‘é(f’ sl y,,-(x)lzn><mn '&3“#’ lps>
(2‘)3
. » (3.28)
. Fe cen non weie Otk dewssd Tor treariotion laverionce for
L eoct 07 tho curvent oserators in (%.283), -ca Lhe ri -nand aide
Wwill be as foliowe: ’
i f iutx-g)+iph-ipy :
—— - T - - =tk [e )
; (Qﬁ)%z }JK <f”b'id!l(0),x n><l<ﬂuy(0)‘f’5)€ ‘
iy o
’ Jompering tnis wuprecsion with (3. oo ouhein on axalicit foram
-
of Trichion "‘1{‘& , A0 cialy by tne wobrix
Clewsits FICETY R ahobe o loia oo Ve e cddiiana s

o () = ;t., Zjd;(ﬂs‘lh%a}}i,n)i Rwvliplo)l ps> -

-)3
@7 30

- p il - Tpespl) o vi (7 - B2E)5)

that es aas

POz 0L wde s Je )

2r3 related

been wasteblisined 2o0ove, sSiace all rcadiasbion operators
to e~ch other, it mexes 1t possible, in princivle, t0 exigress all
the radiation oseretors of the <eecond 2rder vy operstore ot the

=t la Une next scection

firet order. It ¢ bLrae, o2 ge chall de

oo cavelal an virtue ol tue

with vecuuw watrix clewenta, coe

wente coin-

ginguler behwoviocuar oy vadisticr

cide.

Trow definitions (%.20-27) =20d the relstions obteined earlier

> ®
¢

between the reodiation ouerztors there follows 8 large nuwuber of

(c) +
relations between the functions /:’ . FA( / . #iret of
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all, by permutetion of 2 s~nd y in (3.22) end (3.27) we are
sabisfied that

s (x)= Py o () o)

and =)
—~ (+) 3 ~ -
ifalbd‘ (’(): - p‘.’}gl i'dn.\) ( X) ’\'. 5.}2)
where p,,j,' denotes the index peruntstion operstor p and 9'.
J

Now frow (3.11) snd (3.12) we obtain

(c) — (=} — ad —y et
Ay (X)"_ Hot ()(}"' /‘aludv(x = ";w‘(’u + Pf:"' bt (=x) (3:33.1;

at -1 et
VW ) == RS )+ RS 0 = Pp B tex) + puS 10) (%.3%.2)
Mad now applying slso (3,16}, we find that
adv u{' =] )
Fuaw (0= - FIS {0 + Bl = RS2+ U ox)  (3.30)

or
— _ . ) '}I - wt
P (x)= U2 10 = Pogr i () = L3000 Popr R 0) (5.34)
Comp-ring (3.25), (3.21) and (3.22) we =ee thst
— <t aadv ys Y — ~et (_ % )
F _ Fao (0% Paos (%) fuws (X) + Fpp! Moy
s (X) = =

- (3.35)
2 P

Finelly, comparing {3.24) =nd (3.26,27) =nd tasing accoaat

(@]
th

(3.17), we note thet

R x)=t RS- RS )= { (RS 00+ Pept LS 0] (3.36.1)

and
c . ad P . - }
,,(Z(x) = 90 o Fv’,af(x) 1 R = 24 (REW- Fua(d))  (3.36.2)

e now write cut the relstions for Hermitian conjugation.

In (3.30) we perform the cowplex conjugetion =nd find that

) * = (3.37)
olu)(x) == Fw.l ("X)
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Now, from (3.19) it is easy to oblain

/:jM (x)= Fpr Fewot (2) (3.38)

fot
With the ald oF there eoguations =nd sxorasacions (3.349,35) o the

functions HPuar and Fow inesi fexms of F.'«:;t, Huhsorvrag ¥ 1t ic easy

to obtain elso the rules for conjagstion of the functions M
and -L-:luv‘
L K

FLH( (x) = /‘3:/9'/'3“)/)(), /:'_?;,1 {x;'e 3#_]3"‘/7:'5‘»‘& (x} -~ (3.39)

: ] However, in addition to the complex counjuzetion =and nermutastion
of the indices of and & the fwﬁ dermitian conjugsztion should in-
clude sleo the substituticn of x by =x {(the peruwutestion of x and y).

In order to determine the rules fo

N

such conjugation, let aus find
the properties of symmetry of the functions ﬂu} and /'_:(‘.)- ’

which are sleo of interest in themselves., These pronerties are quite

l(‘:lw('x): ——F}’j" F:»[X) ) fi‘«r(_X): /‘?’/’Iﬁi“"(x) (3.40)

and differ from the properties of symmetry of the respective free

singulsr functions only in the =, Ehe oaserotor P,

. 44
which in the cmase of = free field Aewmereestesre intoc ~ unity operator.

With the ald of (3.40) we mey write streightforwerd

— + —
Elw(x) F‘u—.L (- )()‘°F'-(-.o ()() ’:.'Lu) {X) = Feouot /‘)()= E@(X}(}. 41)

thet is, the matrix Fzw (X) is anti-ficrwitian, omd the matrix

F}u,/x) ie Hermitisn. Noting now that

F;» (X) = Foo (X)+ % Furus(x) (3.42)

F od (—X) = fhe (X) - -L Fio (x) .

®
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F"J <etarcdec
we gee thet oL (X) is the Hermitian vart of the dudoywd

2
matrix F}u) (X)

3

” %n?i Fows(x) il§ anti-

Hermitisn. P“’"d-

&

Retarning now to the propertincs of symuetey (3.40), we see that
e , o I 4 , o et
frow the Herwitian and anti-Hermitien parts of the matrix o (Y}

we may form two cowbinatiocus tnst are even with respect to the

reflection X — —X

(1- pﬁ,.) Fucs(-x) = (1= Ppp1) Fucs (%) (3. 43)
and

(i + r}j’j’") EJL\} ("X) = (i + ,Pf" )F' [—)() (3. 44)

and two odd  couwbianastiocas:
(i + pyj:l) Faﬁu}-("x} =~( L+'Jj*f')Fd-uo-()(} (3.45)
and

Theee properties of syanetry, rewritten in wosentun sprce, will

make it "Soseible for us leter, in the derivetion of the disnersion

relations, tec evenye integretions over nepotivs velues of energy.

ES
Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0

vl




- !
Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0 [Ei

2%

Sec.3.

Let us return once more, in concluding, to a discussion of rela-

tions (3.15). As we have already pointed out, they express a very
curious situation that arises in the theory: on the one hand,'
&3 +

5'(’9'("'70%(7})

the second order by the product of two currents, that is, by the

(3.15') expresses the raliation operator of

raiiation operators of the FPirst order. On the other hand, howevei,
such a reduction of the operators of the second order to those of
the first order caurnot be carried out in full: equations (3.15')
say nothing sbout the significance of the radiation onerator of
the second order when the points x and Yy coincide ( more precise-—
ly, of course, about rules of iutegration in the neighborhood of
T=y ). Cne might say ‘that the radiation operator of the second

L

e — reduces to the radiation operators of the

c‘f‘n'(x) oY v)

first order, accarate to an arbitrary quasislocal operator (For

a definitior of quasi~local opsrators ses o ’ Ye
‘hen passing on to the mocuzentum representation, this quaal-local B

operator will be expressed in the form of an arvitrary polynomial
added to the Fourier transform (Compare the discussion in sec.4
folilowing (4.3%) and in Sec. & following (6.15) below). “his re—
sult is extremely close to that obtained by one of the authors
(I"eNeBe) and Shirkov ( )

in the construction of = theory of the S matrix on the basis of

an expausion in terws of the smell paraveter cocupling. The.essone—

tial differences consist, however, in the fact that first of all
these authors, having at their disposal a Lagrangian, could deter=—
mine with its ald the power of the arbitrary polynomial, and, se-
condly, that the constants entering in the arbitrary polynorials

at various powers were finally combined into one generalived

&
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lagrangian. In our method of constructing the theory, the power

of the polynocial has to be iniroduced into the theory without

the use of the Iagrangian in general as a certain new reguiremreni, .

the basis being, of course, corraspoundence with expericent. o
The situation that arises for the radiation cperator of the

second order is mot an axception, but a rule valid alsc for all

the radiation operators of the higher orders. Ihdeeu, by a cone

$istent arplication of tne causality condltion {2.24) 1t nay be

2 shown that any radiation cperator of the (1 & n) th order redu-

ces to the chronolegical product of currcnts:

N T
§F (1) 6 p(xe) D). 3V (Ym) 6 p(2). §9(a) -]
(3.47)

03 md Q A (y.)-
= T (0pa) 0 ) Gy W””)"J“'*J“j("‘"yj

ence, it will of course immediately follow thet ary matrix elem) .

nents of such an operator will for ail the various argurments Xqo 2y,

be expressed by the matrix elements of the currentr é% At annyg

. (-
of sume analogous to (3.30). However, in the car . i each coincie
¢ arhitrariness

dei Zn thers will -ri

197]

ce  of any »noints ﬁ)m

conracted with the rot entirely definite quality of the T-product,

v

n

vihich arbitrarivess ray be expressed by adiling the product of the

arbitrary quasi-locel operator of the coircident peints and the

currents in the reraining points. A more deteiled elaboration of .
» these ideas would lead us beyond the liwiks of the derivation of

dispersion relstions and, in our cpinion, axight serve as a basis °

for a new approach to the coustruction of the guantum field theory,

@ o
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Section 4. Vacuum Bxpectation Values of Boson Radiagtiva Qperators

of the Second Qrder.

In this section we shall investigate in more detail the vacuu

expectation values of the radigtion opersators (3%.8) considered in

‘\"\ae

Sec.3 and the operstors connected with them. It is clear that in
special case of tIie vacuum expectation values all general relations
between the matrix elements (these relations were derived in Sec.3)
will be valid. The vacuum expectation values of various radiation
operators will be determined by Egs.(3.20-27), on the righthend

R
< A (x+3)

sides of which the factor e will now vanish, and

the indices &£ end (2 will simply be converted into ya

and p( . For example,
L
5 ),,,5.;i_~__ .
\ [

3pel*) 3, 3)

Further, due to isctopic inveriance, the dependence upon isotopic

. . _ (e) . .
P, _ (x=y
l?\/-‘ Foe (XYY

ooy +

indices will now become diagonal and we shall write

o ),

) ;o
( (%)

k) = A
5f‘ +) Fr'!

(4.1)

where (?) denotes one of the signs (C))u_ s (+).

X ()
Let us begin by considering the representation (3.30)/n FJ

w

using the matrix elements of the currents. It will now be written

as follows: R
p ) RO
(~) . N - , . - PN ‘.L.‘ [} / N~
s ) Lol (o2
fe (a)* & 2
h ﬁ‘.“t
We shall show that in the sum (4.2) the fuadmm terms are sbsent.

Indeed, the term with n

0 (vecuum) is converted into zero in

virtue of (3%.6).
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3 i
We shall assume thst the states with one, two, three, etc. mesons

are, in the sum (4.2), the lowes’fenergy states (that is, we shall

asgume inst thcere 4o not exist any bound complexes of mesons snd
nucleons with a mass less then 3m, i.e. three meson masses. ). Then
the term in (4.2) with n——-fl meson)will 2lso be converted to zero.
Indeed, according to the definition of current (a'l (‘\'Hu()‘)l ay~

<y Sla> 0 part LR S P o
~ La' | 5 4y (0 . urther, .77 y 2

A
[N

~

C - cq oot
and therefore <a' Idf,.;x)fn\; v {a'| Lo ) 13T a>
Opening up the comuutator here, we-at last find that

\ T N . 5 i s N Y '
L2 & 0135 - A0S 1 13

If we now assume that the states ll‘.‘/ ,la > are Thepstoted o the

\’\_Yecgg_@ o |0 > or one-particle states 11> y then in virtue
of the stebility condition <" [A% =[aL | alj =l

and both terms of the commutatdP mutualiy cancel. Thus, it is proven

that the watrix elements of the type 2| ,‘3(. 1> and
o ) by -
< l:\( | 2, N are eyual to zero. Finally, w virtue of the
o \'1

pseudoscalarmmw of mesons, the watrix elements of current between
the vecuum and the two-meson ststes will #sa be egual to zero,tﬂ-’).

Thus, the sum in (4.2) begins only with three-meson state

m

b

that is, the least velue of K.  is 3m.
Let us now rewrite the suw (4.2) in the form of a four-dimen-

sional Fourier integral:

. . - (kX
G0 U] v = =i 0 T
G 00 = o VAT ) 0o 10,25 R, 0T E S 157 (4.5
CURA)
4 L (?)
Introducing now the Fourier trsnsforms for all functions # (x)
with the aid of the definition
r?) e (kX (i)
\ -/ /i i
IQ (x) = i jf“_ < 9 (K) (4.4)
(a)t

N

we see that (in virtue of the proportionslity of the left-hand side

@
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“®
(4.3) gfg' s the right-hand side wust be equal to zero at g)#?'
end must produce the ssme results for any gf:?’ )

VA e ———

| T 7 .
e y| 8=V M7+
et ' (4.9)

i kiarls STPYUI
However, on the other hand, from the pseudoscslarwm o ‘Pf ) it
)=
. 750 (-
follows that the function ‘@ t*) , and, consequently, g,l(ﬁ}
most be inverient with respect to the Lorentz transformations,
~)

excluding the time reflection. For this reason, gL {x) may

2 and the sign of KO; i.e. upon Blx .

i actuallyy depend only on k
But from (4.5) it may be seen thet it contasins only positive

frequencies. Therefore, it is clesr thst we woy write

P
{4.5)

where the fTunction T alreasdy depgends only on n2 . Comparing this

expression with (4.9) we note that (4.5) may be rewritten as

300 = Ini 2 | @l dsto [RE D [P 2V SO My B
) Z

Thus, we represented gh)(K) , which in virtue of (4.6) should

be expressed in the form of 2 product of the invarisnt function =nd
(k']

which obviously, does not depend on the selection of the biwme

. i 0 . .
y in the form of 2 oroduct of Blx ) and the function,

direction. Thus, we way stste that
N — | R RN = P2 ol S R <
I(km): Z. ‘<d!§10/]nk>>l LY My 5;<~;1n)

[}
' a

(4.7)

. L the

T .
. . . it . Y
The two besic properties of function Atk/ follow immediatel
prog ( y

from (4.7):

N . L e .
1. Lk ; T—L) for ijE\_:).‘M.)‘“
o L2 0 He

We may note farther that in virtue of (4.8.1), (4.6) way bve

=

rewritten as bl o s
o] S T i T L | 327y e L mY) dim’
g"’(xhﬁtif".x“)) gliamy} Lum®) dmt 2 ) 7 Tk, m) L " (4.9).
5 J %
B Gpl :
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This so-called 'spectral' representetion for the function which is
. )i . .
so simply related (see below) to g (X} , was first obtained by

r
Kgllen and Leﬁ;nn They also estsblished the properties of (4.8)

Thus, 5’ . (- . }j] r , .
) ol = 85 (A S L
g fely)lo = — Jre k) L) (4.10)
R}
Substituting here X¢>Yy, we obtain
8 e . ¢ ?':a' 4 / 7i((A'; Jofai gt T, ¢
<O| {ﬁ\%)‘ ';"iliji{; - 2 ke J TR LUK
e ey (4.11)

This justifies the signs ( -) and ( + ) introduced earlier; ’ .
the negative-frequency function reslly contains only negative
frequencies and the positive-freguency functicn. only positive

. hes been =
frequencies. It should be stressed thet this ® shown only for
vacuum matrix elewents; generally speaxing, this property may not
be fulfilled for matrix elements with respect to arbitrary states.

c.orwarhﬂ .
Recalling now the relations (3.33) and pzssﬁcgéiﬂ them to thew

Fourier transforms with the 2id of (4.4) and also inserting the

expression(4.6) for g"vﬁk; and .the expression for /gLﬁ~K)
AT 7\:{;(_34.‘»2 ;‘f"-k“—",‘
(j (K] 2 - LT V8T L - / (4-12)
that follows from (11), we obtain:
L i l()lfu’t
-, By Pt K
gix) = Leitied] Lot =y
. . .
. Rvet 1Al L M (k) (4.13)
q k) = LR S I B

One very important consecquence follows from these equations. Due to
the property of (4.8.1) of the spectral function ifkf} just

. Sore 1,17 V&
established, we see that =% smell moments k~< (m) the

g i
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(-]
¢ aolV <
Fourier transforms of all three functions g , g and‘?
. coincide:
e acdv -, u/t.fs : Loyt
J i) :g BL) = f LRy when k< () (4.14)
This circumstance will serve as s basis for establishing the
i~ aglv, wt.
analytic properties of the functions 9 <., » 4% and g4 ke,
which we shall now investigate.
Let us consider in detail the Pourier trsnsform
’4”,'( gL C ik A -
4 L= ‘ YR UDS
)
in which, ji virtue of the causslity condition (
)
inet . R
¢ LRE for <27 . (4.15)

We shall show thst this Fourier transform mzy be continaed into the

region of complex k by substituting

-

s - Iom
Kﬁ&ﬂhﬁ p:ﬂ& N o= mK
if the four-veector . satisfies the condition
o
v 20 (4.16)
and p is arbitrary. We then have .
Py S Y o |'_;1\c -|—x ; ©A e
fthA;: ;‘X}x;é; Z dx = g kpf:L}
It is clear thsat in this integral the exponent e—jx will

be a cut off factor ensUFiAgE 1ts Convergence. Indeed, in virtue of

(4.16)~ye will always be able to select a frame of reference in
which [215; therefor%, the exponent will tsxe the forw of

éf'ﬁo
But according to (4.15) integration is actually perféfﬁéévbﬁl§?63er
the internal part of the uppér half of the light-cone, where

0 ) ATV EES e anee
X°20 and X S 4o, .

. P

aot

s @

@

Sanitized Copy Approved for Release 261 0/05/12 : CIA-RDP81-01043R000300060017-0



Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0

_a.. ® 3

¢ Lo x T
Thus, function Xi= < < will belong to 2 certain

class CCQfl) s in which

)n_ [ )
nK; -
o tewd]
1 -

{ | iw\

{ hm}‘:b’u{ui

|
[ -
l Tﬁq,» RN

for any m=0, 1, «.v.., 2 3 10=0 , 1, ce.e, g

On the other hand, eccording to the condition 2.1

b
the function 1 %) must be integrable and therefore the integral
i
’_‘{;/tv ’ . ;?[/t ) 7[‘;7'1 "r)‘ (
i LT MLoa) UK = : K - X (4.17)

[

may be vViewed as a linear functional in the space of functions h(x).
For this resson, both the integral (4.17) itself and its derivatives

with respect to k will converge:
N T T P

-

Thus, 4 (<) will be an snalytic function of k in the region (4.16).
Let us note further, that the integrel (4.17), being a linear
functional in Chq,z) , must ipso facto be limited in absolute
value.by the linesr combination of values hm“_ . Since the
derivatives of G‘&\ with respect to x are proporticnal to the

powers of k, we see that the function g (k) increases st

infinity not faster than a certain polynoimisl respgect to kNS
’ (here we deal of course with the region k in which inegualities
(4.16) sre not relaxed.
The Fourier transform g (k) for the resl k may now be
defined as sniwproper limit »f the integral (4.17) when
q cnreh )= 9 I
Ty, T 0 (4.13)
In guite the seme way it is shown that the Fourler transform )
R 'j,&/ '..‘/"
v Y AN H &
uly - AN AX
RN (4.19)
&
@

®
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may be continued into the complex plane with the condition that

r < 0 PRy
g (4.20)
and sfter this define the integral (4.19)~ as animproper limit
fiv ‘L‘J}V - Nl 514{\;
bYn g i) = g pl
SENEX (4.21)

el 1Jg T
Thus, we have introduced two functions % vOand ] <% and have i

proven their snalyticity in the regions (4.16) and (4.20) respecti-
vely. It is e=sy to see thzt the relation between the introduced .

functions follows from the parity relation (3.3%1) deduced earlier

ut, Wb coud e
4 0= 5 ot }‘ S Y £ AL
A ¢ o a0y =
“ 5 , . (4.22) ‘
and , . -
. i At Civ - R
ey adv e 1 Ky Ax

Y NG N ;

there exists the relation

Ay - o

; ) \ I ]u\/ ) ‘t‘)
== - / i " 3
pte ] s b (4.28)

S )

l..:_'ﬂ), O A v B
N For further argument let us fix the frame of reference so that ’
- Il '
| - 0. Since | is time-like, this is alwsys possible and

in no way d5éé-it reétrict geﬁeralit}.

Let us first investigate the function g?Lt; the function gi”v
can always be obtained from it with the eid of (4.28). From con-
siderations of relativistic invarience fj&t(x) can, in actusality,
depend only on x° 2nd sign x°. But then frow (4.22) it may be seen
that the values of the integral (4.22) for any two values of k

T ) . '
connected by the Lorentz transformation L , which does not in-

clude the tiswe refiection? will simply coincide. But zny two cowplex

2ty paa b

@ed [~]

9
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vectors k, for which the integral (4.22) is defined, are necessarily
C
related by the transformstion < » since only such transforma-

"
N

tions retain the condition | 2 0. Consequently, the left-hend side

of (4.22) is (for all k thet setisfy the condition | >, T>e )

, -
a function only of k°. Thas 3 A+1) is 5 certain analytic

. (v-',J(L’ 2
function ) only of k™3

.

e — o -

eT) = FOK (4.23)
ch K 3.-;%1 ;.;Jfllifi';__,',j

L, L L0 A
S0 DIkt >0

region of snalyticity of function on the

2 . . “ - .
complex plane &°, let us note thet in virtue o the oproved enslyti-
) , fuk, o ] . :

city of + <Ptiljin the upger half-plane witr—resgeet to | S o e A

the function (LK) wi1l obviously be aaslytic st a certein point

e Sz 1

£t

=)

s - (4.24)
0 & iL: i{,( | N
7

. LN »
since one way find 2 least one vector K= : 2 +h 4 p

VAN

e that saticfies (4.24), the fourth complex of which would

lie strictly in the upper nelf-plane. Bat frow the egustions (4.24)

T_ ¢t - , ; . .
connecting | < g,f»§ and k, it way be seen lmsedistely that this
. - ) - o
cen alwaye be done for =ny pointes of the complex nlane 5= Seih
. with the exceotioa of  the reql, cogltive sepi- .
7= T ix® - 0 VIR AT A
’ (4.25)

o

Thus, the fuaction G [«*! ig analytic in the complex plane

k™ everywhere with the exception of the positive semi-exis. But the

@
G
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function G (Kﬂ is s function of one scalsr variable, and it does

'not know' WhEE VESEHY

raised t9° fHé séCOAd power gave Tisd v~ thiv
arguinent. For this resson, the reservstion made sfter (4.23%) is now
no longer needed: G fkw will be an analytic function for any complex

vectors K2

, the square of which is not a real vositive nomber.
Finally, in virtae of the remark after eguation (4.17), at in-
finity G (Kz) ma; increase not faster than the polynomial.

Let us now define the two (maybe generslized) functions G4[p{

and G_{p°, as improper limits:

S [ AR S 3ol .
TP )= e Ui wM )fukm, 79 (4.26.1)
. PR S A
and .
s . - - RPN
fe - VA Tk / T ANV AVS 7
. J - ’ - O ’ vy
s ? (4.26.2)
LML ¢
If we now compare with the =2id of Bgs. (4.24) the limit transi-
*tion to the real exis in the function ¢ < and in A sgiven
2 I
the condition he 520, we shall see that
\ '\r-r f/, p’“/» [
’!1{/( r_“‘ =
3 = N
¢ i N
i }7L‘ P k (4' 27)
I, - :

The property of syumetry (4.23) now gives us straightforward

£

i J\f \ ,.";,
PR D o (4.28)
o AR at

i

Thus, we obtained expressions for the generalized fanctions ! tﬂand
VI
+ .P] in the form of improper limits of s certsin single analy-

tic fanction ¢ ~K_} . Keturning again to (4.24) we find that

these limit reletions may be written also in a more simple 2nd

G
2
<&

L]
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symmetric way:

S uf»>f“4yffm"»m7:7wl e
Nl- bmww JTipTrrep’)
g (pi= o : ¢f (4.29.1)
Ay
tro
and
v i)
s - 14455 : \
J W (4.29.2)
v .
Now, noting that in virtue of (4.l13)
’ v 2 ;006 ) )

- i

joerr =0 44 p AR

)

we see that the function g* w3y may be written in the form of

animproper limit

.

Lo U TSPt
dpiz m L) s o TP
oo FEe R

)

(4.29.3)

It may be noted that in Bgs.(4.29) we permitted an indication of
the vector p being time-lixke on the groands that forfs§0 the
function G (pz) is regulasr and, consequently, the way of limit
trensition is simply indifferent.

Finally, subtrscting (4.13%) from each other we find that for

the difference of the limit values on the line of cut

N

>

A
T { G %

bei

From the property of (4.8.1) of the spectrsl function I(pz) establi-
shed earlier, it may now be seen thet not the whole actual positive
semi-axis will representethe lire of cut on the complex plane k2

for G(KQ), but only a part of it

Imed -2 Re k) >

) =

9. T
Lam) :
(4.31)

s
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2 -5y~
Pt

o8
@The properties of the analytic function G(§/ that we have

established and also its property according to which it incrases at

infinity faster than a certain polynomial of SA y permits us (using
y y

the limit equations (4.29) which we have just deduced) to construct

<, wt Y, [
for functions g »K),'ﬁ {)and 4 (X spectral representations
g o

of the same type as trose obtained above for g fj(K). For this pur-
pose we shall make use Cauchy's theorem that was discussed in detail
in Sec.l. -t

We shall assume that the function G \gj increases at infinity

not faster than ;n . Then agbording to Sec.l Cauchy's theoren

may be zpplied (mhvwe disregard@%ﬁtegretion over the large circle)

to the function i
, =5

(4.32)

) A
i T=m

POy 4 .
. which will have a pole when %] , in addition to a line of cut
fromlﬁfﬂ)“ to ©¢ . Therefore, we shall select the integration
contour in the following mammer: beginning frow the origin of the
coordinate system, it will proceed slightly above the resl axis to
—+ X » then it will include the large ci;cle and return to the
origin slightly below the- real axis. Due &2 *h: properties of the

i o
function, A WS theud ccotour will™teduce %o “the™ —

R g

difference of the integrsls over the upper and lower side of the

line of cut and the swall contour sﬁb around the point €= m= ,

| which pssses in a neg=tive sense. Thus, we way write:
| g-myr o g (g

| G(3) -2

At -
£

RNy
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@,
@
In place of the difference of the integrals over the upper and lower

side of the line of cut, we wrote (in accordance with the definitions

. - . =6 F ! 1 ;> y . ¢
in (4.26) ) the differenc& Vit 3 )‘ . (_\,/) . +» The integral 4
T A s
over Cm gives '
N ! . *
R - o , .
. —~ L ‘_v‘M’” e )
1 S Wll" AR - — - Z PO o N
LR / J . .
L - = ) = '
“m -
and therefore
- i
- S oo
~ : I \> - l:/\'"h,' -
SLC, 2w - (4.33) !
il

This equation umay be gonsidered as a soectral representation for

the function -+« , in which we find the ssme spectral function
"l.

I (k).
If we now perforu the corresponding limit trensitions, we

e Pl

shall obtain spectral representations also for the functions

e

Cr. o Sl acl o '
Q P, d n%) and 4 7 which are of immediste interest to
o/ N L8
us:
Qe
N i o . N el "gl {,,)_ et
% NP . "ITK’:) JT P =0T '/" el e ;
¢ s T N .
G . STt (4.34)
U
o . —
'(ut: . : J A2
adv, . nal - \1 . e r
{ > - n J’{V\LJ \ A el s
ﬁ ~T. A J t:' hq‘/ﬂ”\.g‘ ) ;!ZI“)AI‘
M, N . e J (4.35)
— O 2~ N
‘ B e
+Z - 4‘(
1= o
Let us now establish certsin properties of what are actually
STy ) .
indefinite coefficients & (M, .- . , that enter into (4.33-35).

. .
A0

o)
Let us first of all show that the coefficient U 1is equal h.j:o zero.

© Ll

L3
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%

or this purpose let us consider the matrix element of the S matrix

between two one-meson states ]pﬁ§”>> and /7§$7 . According to

(2.10) At will be equal to

Y e o ot N,
LP g ol psr = 0 baip, & v P
& 4 ) 3 ‘

A

oy

If we put fhe ceeation amplitudes to the left, 2nd the destruction

amplitudes to the right with the 2id of commutstion relations (2.25)

) )
and (2.11) and made use of the definition of the function ¢ .7/

we will obtain for this matrix element

i)

v. > . , STy T 3 I s ~. / O
" / N 0N A P ~ O I ¢ 52 o= 0
\),‘l‘ ;/"\ " \’l\‘rg N 4 )n'~/‘,jl-/
: 5 ! ’ oy
(%)
But on the other hend, in virtue of the stability conditions of
one-particle states 1.6 from Sec.?2, this watrix element is equsal
only to the first term on the right-hand side (). Thus,
Cr \ , Iy
% )= 0 . when P = N
once it follows that
=L (4.36)
. ’ oy (1
#e shsll now siow thot 211 the constents - L s
be resl. This sssertica is vy if we note thet from
the conjugation relations
S, . SR . N
!\y/f‘; P ‘
S ™ )
2 ;
(4.387
v ok, ,
= 4 Sk
(4.37)

and the integrel (4.35) has this property itself. Thus, the Fourier
trensforus of 21l three Green.like mstrix elgments (the delayed, ad-

vancéd and the causal) permit spectral representstion of the type:

i

&
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o1
it
fal) - . )
g Lpl=ip=m )
{ i
\4"
.
Lo,
s
{(4.33)
O Do
- 5 ]
; i ) { - -
e N . N
) “ st S ? ) oD . “ »,)“/
05 - ET- A - N 7o
i « . J s Sl -
; L\J -2 r . o=
) LY

7 .
“wa 2re real.

With the 2id of the relations found in Sec.3 between the

cre fron the spectrel reoreceatetions {4.33) one

¢ pey obtein iswediately the soectral regresentstions for the vacuum
matrix elements of all the remalning radiation operators also.

e mey note that in the forwstion of linear cowbirations that

_ At o)
correspond to 2ll the 'non-Green-like' matrix elements ( <

4 T A L. . ‘ . . N
A ad N ), the indefinite polynomisls that enter into (4.38)
A

vanish, and under the integrsl there arise C.< -k J | due to which

‘1..,‘1'". . . N .
the fsctors P~™") within and without the integrals caacel, and we

then obtain representetions of exectly the sawe type as the repre-

) for g/ found above. A representstion of the tyve

o
(4.738) with substitation of ©—w— for .

~ L
SRt 5-n -

“sentation (4.

will be found for

the Green-like function.

La

I

hus, we find thet with respect to the spectggl representstions

from vacuum matrix elements all the radiestion oéératéré of the T
second order zre divided into two groups. Simple spectrsl represen-
tations of the type (4.9) are obtained for matrix elements of
'non-Green-like' operators, whereas for 'Green-like' operstors

complex representastions of the type (4.38) are obtained. These

@
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lotter were obtsined in a2 rather cumbersome way, by investigating
the anslytic behsvioar of the corresponding functions. =#
We might make a different attempt, to pass directly from the
R spedtrsl representation.(4.9) for g 7(k) =and from a similar one
for g“”(k) to the spectral representstions for 'Green-like' func-
tions with the aid. for example for g% (k), of equations of the
type (3.15). Direct calculation would then lead us to a spectral

representation of the 'simple' type

o I}
. : AmS Pt
k) o '
4 Jome i (4.39)
R —
for g and to the same representztions (aiffering only in the

2

method of circumventing the pole when m™ = Kz) for the other 'Green-

like' functions. This wass the method used in the worji of Lehmann.
However, in actuality these simple representations would,

generally speaking (if we did not impose the stringent restriction

on the degree of incresse of the spectral function st infinity),

be devoid of any meaning insofar as the integral over m*  diverges.

Indeed, whereas for 'non-Green-like' functions the kernels of the

p
J=

spectral representations necessarily contzain a function, why

does the integrstion in eyuations of the type (4.9) actually take

place only in the neighborhood of one point, =nd the behaviour of

I (n2) at infinity is inessential to the convergence of the integral;

in the spectral representations of the type (4.39) for 'Green-like'

- functions, integration on the contrary, is effectively extended
over the entire interval ( - & , « &), which leads to divergence in
the csse of insufficiedtly-rapid.diminishing of 1 (%) at oo .

The reason for this difference in behaviour#fé“éﬁfea$ia;;y_

already clear from the equations (%3.15'). Indeed, these equations
(4 .
define the function @ F,, (%) only for *» b or A-Y . Whereas

AWt

its value at x = y remains indefinite. And in virtue of the well-

ES

&y

)
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known singularity of all F-functions on the light-cone, this value
at an individual point is essential for the construction of Fourier
transforms. In other words, for a full definition of a T-product it
is not sufficient to define it only for x > y and y < y; we
must also give the rules of its integrstion in the neighborhood of =+
zero. Otherwise, the meaning of expressions of the type Tgkwﬂlgvfj
remgins not entirely defined, which manifests itself in the ocrigin
of mesningless diverging expressions in the case of large moments.
The arbitrariness thet arises during the integration of a T-
product nesr zero is most simply expressed by adding to its defini-
tion in coordinate space a certain number of derivatives of QYXP;
with indefinite coefficients (See, for example, ), which will

add to the right-hand side of (4.39) # certain polynomisl of k%

/ Lo~ (/ iy
/%h\ik}? . -0 ’ (4.39'")
)
It is precisely the coefficients (which may be divergent) of this
polynomisl ihat are to compensate for the divergences in the inte-

R grel. In practice this compensstion is most simply performed by

meking use of the well known subtrsction procedure.

and therefore . T 2 I,

- (4.40)

@

=]

]
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&
If we select n sufficiently lsrge we might make the first integral

on the right-hand side (4.40) convergent; end the divergent terms
expanded in powers of the polynomial k2 - e might be compen-
-

L. -~ SN R
seted for by the polyhomisl & (k), of

«-s-—-.ﬁt
which there would then re-

main only the finaI{polynomial, and the sauwe 3s ia our 'complex'

spectral reoresentstions of the typé (4.38).
Thas, also salong this line we would finally srrive at the same

relations (4.3%3), the derivation of wonich, nowever, would be less

S

convincing due %to the necessity of nsving, to do 'along the way',

with divergent expressions. It is precisely the possibility of

escaping tris difficulty entirely that we see the chief sdvantage

of the wethod of arguwent we have

We shall show how the well known result of Lehuann-ikgqllen)
which referzs to the spectral representation of the ordinary Green's
function is obtained frow osur spectrsl resrescntstions for Lthe

=

v

Y

riational derivatives of the scattering matrix.

Green's function ¢ (x,y) is usus=lly defined ss

Al ~ —
[+ - M
U, AY, = e B TN Y S ) )
55 ‘ i 8] - (4.41)

Using Wick's theorew for trensformstion of the T-product on the

right=hand side, we obtain

~ N . = ?
oo i e . s p
5y (I sy AR R N N
)
(4.42)
- ) — ) e
. / ,/ J R R | )
e N (‘, i Ay A < . . - " W f ’1 y -
. . i ‘ P 2
\ A [ o
Yoy H e L
' ! AN
where " ~ Iy
Y ! - oA T
; o { ¢
" o« I

Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0



Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0

_ by -

e Passing in (4.42) to the Fourier transforms, we find ’
AL { e
. b.(k )= _ e L LK ,
. omt ,LL/-;Z ;"m" ,4'“»:5/" : (4.4%)
whence, on the basis of (4.3%3),
(S
i O A S M- okt
O e A R A A A o 1T KT r
: S Zsmen ‘
- T (4.44)
‘ SR )
e S tri S —— -
*vf“-,'l . "‘fi -~ . N
- - ~y TR

Lemy

;ﬂThe fllen-Lehmann representation will now be obtained if we
make another additionsl assumption to the effect thet 'degree of

increase'jg is equal to unity. Then sctually

' ‘é- P i ;\_‘; K N - o - -
.J‘,(j~\.T_,|‘LrH AT T »—;,"—"‘F ) sy “,_ (4.45)
- T gt
<M

and the factor (1 + Cl) may be excluded with the aid of finite

renormalizstion:

@
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Section 5., The Vacuum Expectation Values of Fermion Radiation
X/ ’r‘i;fy ®

Operators of the Seconéd Order

ln Sec. 3 we found that of all the radiation operators not

higher than the second order, only the operators of type (3.8)
and (3.9) have vacuum expectation values different from zero,The
first one of them was considered in the preceding section; we

shall now investigate the vacuum expectation values

5 ¢ : 4+ @'&';’/,
<:/C> —— PO N = (-7 )
~ T 3eidely |

(5.1)

In performiné the differentiations with respect to the fer-
mion fields, one must take into acoount%their anti~-commutativity.
This will f@jstly lead to the left and right derivatives differing
as to sign if the even value in the fermion operators is differen-
tiated. For the sake of definiteness’we shall deal hénce forth
only with the left-hand derivatives. Further, the anti-commutati-
vity of the fields will lead to anti-commutativity of the derivati-

ves in the case of multiple differentiation, for example,

stA §2A
Sy Sw, Sw, Sw, - (5.2)

The equation for differentiation of the product will also’ change.

If the left-hand derivatives are used, it will take the form

Se 55 800 A s (5.3)

where YA is the number of Fermi operators that enter into A

multiplicatively. Finally, we may note that in performing the

o e e e S e e e e e

X/The reader who is interested only in the derivation of disper-

sion relations may omit this section.
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Hermitian conjugation our left-hand derivatives will pass cver to
the right-hand side, and in order to returnsthem to our standa¥d
order we will need an additional change of sign, 1f an expression
that is even in the spinors is differentiated.

As in the boson case, we shall establish the relatiaﬁ‘between
(5.1) and the vacuum expectation value of the product of the cur-

rents. It i¢ therefore useful first to determine the rules of con-

jugation for the two currents nlx) and 7 (x) introduced above
(/3.4/). In virtue of the unitarity of the transition matrix,
the expression for A (x) may bve written in two forms
: Ao 88t
Nlx)= ~t gm0 O T S S o) (5.4)

Performing the Dlraﬂ conjugation we flnd 5 S +
C ¢
bl S (55 =S (£ 3= S (55 )
Aoz ot lop=i S (500 ) B S50 ¢ I (§3a/ P
In order to determine the meaning of A (x) let us consider the
local Vai?a?jon p J \ \ ol / ;3
g,‘.): v (530 )) ”LM“(%)

Per forw1ng now the Hermitian congugatﬁon, we flnd

TR [y TR T

Vb

/53 q I =\ -
wa> paw[x) +<§—‘(4—5‘J> S¥ (%) 3~
b .

g“'“‘) su.w) 65 ,+ gy)‘) \BU/U)> P
But, on the other hand, + .\S+
) 5,5 =8¢l 8 m r el Sor 8 wlx)
Therefore 3

(5.54)

\i"—x))/s Swiw Sm)) B M(x)

Thus, for the expression, Dirac-conjugated to (5.4) we obtain
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ot
~ . + S 5
() (x) =t &% =~ i" (5.6)
§4(x) §¢ix)
which justifies the designations ')(x) and 0.x) introduced.
£s
If we now vary the expression '5;9) st
: with respect to ¥ (¥) :
. B __gre & ) L8 5t
' BF ) £e0 L oviy) (y)  Fe(x)
and using the definitions of the currents (5.4,6), we find that
‘E,?'S ot L0y —
R o ==t — % — g YA o —
S¥X) YY) §v (x) ey (5.7
* In the very same way we obtain
A% e ; B
é&%"“”" el B gty Qﬁ(x}"*ﬂleﬁ(a) (5.8)
£5 (9 8% () §(y) 6§09 )
From (5.7), (5.8) there immediateiy follows
S 5 830
AT+ A= (G4 ™ w0 (5.9)

- an analogy of the former commtation relation (3.16), where now,
however, the commutator was naturally replaced by the anti-comrme
tator. On the other hand, making use of the causality condition,
we obtain

AL~

03 Lt

)‘ ¥ a(y) X2 Y
) T _
i) ivy) ) ~7)I % X%y

(5.10)

In complete analgy with the boson case, we determine vacuum -

matrix elements

— ~ (Y )
Qo | T (0200 ))e>=tU " (gy) (5.11)

7([3

&%
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_ , -)
<0 ’ O.L[") nlaCY))o> = ¢ @d/s (X'y) (5.12)

(+)
A ly) 0 0> ¢ éQ /, V4
KO Dploy Oula|o>= ¢ B (4, ) (5.13)

<0/ndw B 00) 4 B9 0, |05 = € Gy levp= ¢ (2;"/»;-;/47;?’,,5}5'14)

(y) ~keb)
-:(o/ [0S = (o] )| 0uto, %(VJJ [0) = @/,. *9) (5.15)

S (x)

D2

= - udxd
_L(O/ T V)IJ> <oiy/\v_x)Lo,mneu)J!Jo> = H{,/: (x,v) (5.16)

EY 1

We $hall need ©

e following relations between the matrix elements

of the radiation operators that follow obviously from these de=-

finitions:

e, 2ot s N
/5 (.X/ v) = 9 /)(/ v) - “9 (X’ 7) ‘/»w s ( )
<) ) j - 517
Bn,3) = @° Lxu)h QD7 (e ) J
; / s TNzt . TN ao /

b V9572 @0 2 @ () (5.18)
0f course, the retarded and advanced matrix elements have the
property:

f AQEJ‘/
27 - y
“ l,9)=0 for X<y s & n9)= D for x2 VY (519)
It is clear that due to translation and isotopic invaniance,
e &
all the introduced functons éD must have the form
;2 ,
~ {7 (?)

. /) / {1 ) / ,

e M) (k) = b T (K9 (5.20)
where 3, t are iéotopic (proton-neutron) indices, and éQ .(?g}

are ordinary spinor matrices. Further, in virtue of the invariance
with respect to the Lorentz transformations it is clear that
?

é)/gvmust in their turn have the structure
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‘L d g (?) °
__69(?{511 2094 )+ (%) (5.21)

iﬁsertwoﬁ page 64. where ﬁ(bandzaqvare scalar functions.

() .
/ Substituting in (5.17) the expression for & (%,9) obtained from

9“5
(5.20,21) in terms of ¥, , Yz we immediately obtain
2 ) /o(?j
. the relations betw?en the scalar functions ] and 2% :
(e) (2t (6 ~
. s (0= Sy (0= 58,7 (x) )

wdv, '
bﬁ”;‘)[,,) - 2})( )/x/ */O'z 7 (5.17")
Cad

the completeness conditions and translation invariance, we may

Let us now consider the function (x). Using, as always,

write for it:
_(kk-y)
=)
0 //tv 2 je//</0//7,,y)/ﬂ/4)(n4/ (3){0/3
9z L

n

(5.22)

In virtue of (3.6), the vacuum term with n = O will be absent in SE—
the sum. In virtue of the arguments that are precisely the same

as fhose used in the boson case (following Eq. /4.2/) the sum will

not include terms that correspond to the intermediate states with

one nucleon or an arbitrary number of mesond. Thus, the sum in e
(5.22) must begin with the term having n=2, but not a two-meson

term. Thus, a minimmm mass of the intermediate state will be ob-

tained if the state has one nucleon and one meson, that is
2z / 2
Rtz (Mim) (5.23)

Writing the eransion (5.22) in the form of a ;our-dlmenSlonal

Fourier integral and def1 nifg “the-Fourier transform 5 (7 )(;)

of the function 69( <) in our standart way, we see that
/)
5‘%1):-1H£>7 Ik Lu)ﬁu//\ﬂm‘7ﬁ@)li> -vuﬁ't)
LyN (5.24)
n .
It is clear that the Fourier transform 54'}(K) will have a

matrix structure that is quite analogous to the matrix
NC2)
structure of & (%)
1y . ) - vy
T ey s ) 0T w5 ) (5.25)

where Tﬁz)(ﬂ} and 02 /OJ are scalar functions, which are preci-
g12),
sely/the Fourier transforms of the scalar functions 2{ (%) and
n {7y
v, {4)
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Repeating the argement in Sec.4 we shall easily see that the A

{4: -) P -
functions 0, 2 and oz‘éa are expressed in the form

-~ Y Gomn NYVESN - , 4

R N PR LA (5.26)
where the spectral functions g, («¥ and ;% (4% that depend only
on ﬁ?mt are determined by the condition

?9{"”){(3‘0;6(/4‘) +/~2(;¢Z)§: \

/
ZQ 0. (0) 10> i | 05 0) |0) Bl 2y % Mo~ 7 (5.27)
0
) (zl My ) . J
In order to divide, in the right-hand part, the terms that
refer to f, and fy , let us multiply (5.27) by 5‘0 ; then

evaluating the Spur and writing the Dirac conjugation using

the Hermitian conjugation, we shall hake

Sty o) = 22 Z Colo)lesy| Spa- )

See. )
In this equality factor 29/ﬂ9 k% may be reduceé&féﬁﬁf‘fﬂén we

shall have

a9s LY [l ),

hol.

whence it may be seen that
1. p (kYzo0
, L lym) ’
20 g (k)= 0 4y W +m) (from /5.23/) (5.30)

In order to find the expression for PziKz) ,» We take the

Spur directly from (5.27):

Vz(kz):w Z’ O(.)d[o) > )(0)}()>X" ’)(KL "L)
- 2

h#dg
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- Ti=
. o Jo
In the representation of the Dirac matrix used by wa J'= o-1 ’

therefore

//0) wo | 12 .
Ie2) (%) = Z&’f‘ ) Jf (0] 04 0)]n2) f St ML)

nedzll
Jle)ee 2 /51 na s .
_ Z} 2_) /(0)-’%/9)]”“\/10[“2_%) (5.31)
”-;,(z.?,l(

By adding and subtracting (5.28) and (5.31) we will arrive at two

more inequalities
Iue) | kog () v 062) | 20 kY [k H )R (52 j 2 0

]

—

If we now note that .

ENEE Szt 2+ = (]
we will then see that the condition, necessary and sufficient for
carrying out the inequalities obtained (which inequalities must be

found in any frame of reference) is
W lp () + e )z 0 IKLAD) - (k) 2 O

Thus we see that the function f;(kﬂ) must satisfy the conditions:

1o -kl kY € 7y (K8 € K P (KD (5.32)
o/ ./ 2
o 2. G e=0 b wr<lMem)T (£row/5.23/)

Thus, we arrived at the spectral representation for the func-
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e
e
..73_
tions 0‘,(') and 51(_)
O .
5 (ke e | D) St W) g (u) el
’ (5033)
(Mfﬂv)z

which is entirely analogous to the spectral representation (4.9)
for the function ﬁéd(ﬂ)

In order to pass on from here to the construction of spectral
representations for other functions T(?%%),we shall first have to
establish severalnhére relations between the functions of various
upper indices, which follow from invariance with respect %o charge

conjugation,.The condition of such invariance may be written in

the form
. ) : -1, ( P
2y A, N>y I v) D (¥) O
<i9 },)H(U‘Vx(z)}‘) = \\)) g (Y) e <)) :> ) (5.34)
where the cliarge-conjugat’ operators 5’, n! are connected
with 7 , 7 by well-known relations
ro= <, T =1/ =l
Nlx)= LAl = D < calm = C N (x)
(5.35)
and the following conditions are fulfilled for the matrix C:
T - T (5.36)
et 0 eTare s € fpre = -

. N T B NN
Applying coundition: (5eJ4) 10

side of (5.13) and utilizing (5.35) and (5.36), we shall (after

rather simple matrix transformations ) arrive at the relation:

~ (t) [ ol ol " NT
B (== (<87 (-0C) (5.37)

that establishes the connection between negative- and positive -
frequency functions. The obvious linear relations between diffe-

rent-type functions will make it possible for us to deduce imme-

Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0




Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0

"'/3 -
diately from (5.37) another series of relations, from among which

we shall write only the following: .

@uj—(x): (¢ §°% (-2 C ) » (5.38)
which we shall need further on. 2
1f with the aid of (5.20,21) we write (J (1,7/ umng)} (x-y)
and utilize (5.36) in’order to get rid of the matrix C and then
divide the parts containing and not containing the matrices \{’
(which may be done by evaluating the respective 'agiau?.ey)), we will

obtain from (5.3%7) and (5.38)(;;119 corresponding "parity relations’

)
for the scalar functions 79;;;

TuF
(+) adv 2t
79:,, ")“'29 (’() D i ()= li:z (-x)
Performing here the Fourler transformation, we have:
Sl (== 8 R (5.39)

(k) = b‘..f* (-x) (5.40)

The relation (5.39) makes it possible for us toc write imme-

diately the spectral representations for the functiouns (f)(f‘)

5.0 = 2ai 9-x) Py (x) =
>0

7, 2 P
= A f}ﬂ(—ga) S kM )ﬁ;z LM’)@/.L{L’
(Mtm)E
By substituting this spectral representation as well as
(5.26) in the relations obtained from (5.17') in the transition

to the Fournier transforms, We obtain:
of
£, “’(:4)~ ~ 2w Slwe) p, L (KD ¢+ 5. f(“) '
(5.42)
6% (k)= -l Ixo) g, (k) + J,:‘ (r) .
Thus, as an individual case we find that (as in the boson case)
at small momenta KL<«/\/U+M)2‘ the Fourier transforms of all three

'Green-like' functions coincide:

s Q)= 1980 = £2 (0 12 12 (M) (5.43)
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Since we have established the spectral representations (5.26),
(5.41), the properties of the spectral functions (5.30.2) and
(5.32.2), equations (5.42) and the relations (5.40), further argu-
ment may be conducted ba repeating word for word the conclusibn
of the preceding section. For this reason, let us copy out at once

the 'complex' spectral representations for the Green-like functions

(e) b e
0. 2 ’ 6..',1— and ‘5‘;-,1

'><> n
. T e,
(G-M%)""(G-p=i€) L

s ()= - (P’-MZ‘)M

(M m)* Js
and
== o
* =
ut nel ﬁ'z(a)d Q \‘\ (i) i
r-[ﬂv) - /82 4,(2) | . + 5 . 'fﬂ./é/y
D,- (P) = =P~ / LI 2 4m%) / / (
2 G- g-piiep) [
J J':,) (5-45)
(/’\/(1\-)7])'Z

In practice, it is more convenient to have the spectral repre-~
sentations written in a slightly different form: in place of f,

let us introduce two functions that are non-negative in virtue of

(5.30,32):

(vY o
, ooy - B oLy, A
9 (V) 2 ——— A ROE Y
t 2 7 2 (5.46)

where V= +J1* =[] , Then
WRAD ER ) = o) o) e wg) o)
(here V is considered a variable independent of k ) and if

we construct combinations
(N (1), (1)
S s ) 8 P R LK) _ o)
which are, as it is easy to see, Fourier transforms of o (x)

(the index (?} denotes (C), (adv) or (ret) ), then for the full

&
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- ?
Green-like function Ef (K) we will obtain the spectral represen—
tationz(z) ] ul ( ()L v ) j (V) + (l(én)) @/1}27'_/"

(K): -(K-' ‘) yg_ u.b( é.’}[ié?./\ 14(5'47)

M
N (,2 /}(;)* (f((“) e (/g(ifl),,y("”) (i M?) . J %7

If we wish to establish the spectral re pgif entations for the conc=e
rete functions ch ’ ZTJ and Z{ , we need only to se=
lect the proper rule for circumventing the pole ke =M,

In order to reduce the representation (5.47) to a still more

visually clear form, we may note that the differences

. . Zarl
nel A
(k% ul) [ (e-4) [

— . e —_ e —:‘—z o
/\V?-,Mi‘)‘“ J-lz L‘Q_.H)g * 1)——'2
an&{

el 2ne 2
- /A ‘
H‘ " .) fl \;L—/‘Vl) |
e - i A
/\,z ML)""‘ Vel ’\\/fu ) 2+

are, with respect to k ’ polzhomials of the power .<2n + %L
Indeed, by reducing both terms of such a difference to a common
denominator and breaking off the linear factor from the difference

of (n + 1)-ths powers that at this point is formed in the numera- -
tor, we find that it necessarily contains the factd%{/%/;r, respecs-
tlvely 'V*%) ), which w111 cancell w1th the same- type multlp—
”ller of the deﬁomlnator, only dependlng on k. Therefore, if we -
form such differences under the integrals in (5.47), then the

the respective powers of £ in each term of the polynomial may be
simply carried out of the integral, and the  integration with
respect to V will lead to a certain number, that is, integra-

tion of such a difference will simply lead fo a polynomial of po- -

. A
’ wer(2n + Q with respect to k.
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This enables us to transform (5 47) to-
Aneld f‘ j I, () (;)) j J/+

2(!&)- - (K M) J, L V+;4 t V—K

By + By (e-M) F ot Bynp (R-M)
where the following new spectral functions were introduced

(5.48)

insd

. . I ) 2 'jZU}) Yo o)
20 ana W)= "5 2
4 n 2 LV—M,) 2y

2 g’,(’#)- v
(V-}- M)imz

/
L v)= (5.49)

As in the boson case, it may be proved that

739 =

for this purpose it is sufficient to consider the matrix element

of S between two one-nuclegn states just as in Sec. 4 we conside-

red the matrix element of 3 between two one-meson statesl Finally,

the relation (5,18) leads to the conclusion that

all B,ﬂ are real. (5.50)

The representation of K&llen-Lehmann for the fermion Green's

function might be obtained again with the aid of considerations

that are entirely analogous to those used in the preceding sec-

tior, with the additional assumption that the degree of increa-

sing n =0, Here we again come face to face with the interesting

fact that in our system of conditions (Section 2) we have to give

the "degree of increasing" of the spectral function instead of the

Fform of--

Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0



Sanitized Copy Approed for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0

®

Section 6. The Coastruction of Dispersion Telstions.

This sectinn is devoted to. tne derivstion of concrete disper-

sion relstions for 2 dzfinite process: the scattering of mesons

on nucleons. For tHé 8axe of-siwplifying the argument we shall

first obtain thew with the aid of 2 simple wuethod, which in essence

V. Notwithstanding itse siuwplicity (or
rather due to it) this method has certain defects: et several ocoints
one is forced to carry out msthemstically incorrect ocperstions.

These places will be made special note of below, asnd in Section 7

we shall give the rigorous derivation of dispersion relations, which

should be free froi incorrect moments. It should be emphasized
thet in deriving the dispersion relations we shall not refer at any
point to conventionsal theory, but will proceed only from our basic
orinciples formulsted in Sec. 2.

Thus, we shall consider the problem of the scattering of I -

-

mesons described by the real field operators L?P (x)
( .? is the isotopic index; naturally, charge syumetric theory is
considered) on nucleons described by the spinor field “W(x)= (i&?bl.

We shell assuwe that before scattering, the nucleon is in a certain

5

efizedwby~msm9ﬁtam~v~rr~~~nweni~5~iawendmw.‘ e B

o+
)

e stave-Tharac

C
(

isotopic guantum numbers, which as 2 whole are designated by g 3
the values of the same megnitudes after collision will be dencted by
.2 prime: F" 5' Similarly, the momentum and isotopic
index of the T - wmeson before the collision will be designsted by
q 9 and 4,,.?, and after the collision, by q’ and nf, .
It will be convenient to select from among all the guantunm
numbers the momentum q ( q') of the meson, designating the

totality of the remaining numbers for the initial (final) states by

~§¥—-

¥
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'Ed
one letter
od=(p,s,p) (w=(p's',p))
We will assume that q #;7’
Then the transition matrix elewent will be written ss follows,

using normeslization conventional for the scattering theory:

S(dyq;w,q') = (23)3< P $H3'p' I SIps,qp>=

= (@¥Xp's' |afitg) SaG)Ips>
PO:I,FZ+M",--~-.,7°=/9"+ z .

-where we make use of (2.10). With the °ld of assuuwption 2.3 from

(6.1)

Sec.2, and performing the transformstion of the type (2.20-22), we

shall reduce this matrix elewent to the form:
c(q’x«qg) 2 ¢
2,9 w drd pist 5 s*} s>
S( )? )9) J 4 \’q‘—"‘q gtf’,(x)glp,(g) P >

""Z+HZ)-‘~19 —iz_‘_ . <6'2)

l
Now let us return to the considerstion of the functions

(c) (+)
2o (X)— K

shell sssuwe thet the states [PSD> and |p's'> , between which

(X) introduced in Sec.3; now, however, we
the matrix elewments are tasen, are precisely the initial and finsl
states of the nucleon. Let us introduce (in the very same way as in

Sec.4 (Eq./4.4/ ) the Fourier transforms of these functions:

ol W (X) (2 )(/ Jd"e 7-100 (r) (6.3)

Now substituting in (6.2) the expression (3.20) for the matrix
element of the causelity radistion operator and pessing, in it with

the aid of (6.3), to the Fourier trensform, we obtasin for S(J,‘i;' w; ¢')
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S(4q;w,q)= (;—;——’jﬂqﬂo g'-p) Tais (332)

o S ' . 4)
A L A AR
For further argument it will be convenient to introduce an

auxiliary function, the "retarded" matrix element
Hw-«w)
Hdy g3 0,9') = fdedy € o Saly) ey =
<P
v qu 7’ 3 (x) (
- 2::) ’ 9+9 (6.5)
= 5(qrp-9'-p) TS (1ET)
— It may be notgd now that in virtue of (5 3%.2). .
)

"oty g egt) ; (), g
TS (1Y) - T 2E) = T TS (-2 =

I .(~ ‘7"—(-")( (=) (6.6)
g2 L;'T?of, /4:(“, (x)elx

Substituting in (6.6) the expressioh (%3.%0) for hu.o(%) and

carrying out the integration, we obtain for the difference (6.6)

\L‘} . L N 3% eg°’ o, 0/ |
TE( L) - TS (W) - 2w S5 (FHm + 1L - B2 )

AP fol03] R 0> LRI ONFSY | | s

= -
_ P-7-1
2
Therefore, if we form a difference S- 9 , wnere the
- fuanction 1T an S(.‘. _-'3'
O - ZTuncticn alse appears . v‘a.. o Cg ~| ,which expresses

the concerva’clon of thn four-momentam, then the qrguLent of the

g' functlorv th 3t enters in (6. 7) w1'Ll be equal to

! 2" ~0l o
WMIH(P-F) a7 =P
which, if we take account of expressions 79' and /93 in

terms of momentsa, will equal

UM+ (F-3T e = (W
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My > M+ (¢-8)
We will now assume that the systew of a nucleon and meson dggs pot
have bound states with a mass less than the mass of the nucleon.
Then the latter expression is essentially positive and, consequently,
the argument (6¢B) of the %:—- function in (6.7) can nowhere be
converted into zero.

Thus we descovered that 1f the westrix elements 5 and 7’”‘

are taken for real particles, in the case of which the determination
of the momentum fixes the positive sign of energy, and the con-

Sérvation of four-momentiud i€ fulfTilled, then

et
Tuo (K) = Taw (K
(6.9)

that is, the matrix element O (d, q,w9Juay be replaced by the
matrix element j%(d ;qitdoQ')

Let us consider in more detail the function ’Tlvo (K
First of =211, dividing it intc Hermitian and enti-Hermitian parts
-t i
2 (K= Das (k) +1H.m_>('<) (6.10)
and comparing it with (3.42) we see that

Daws (R) Tuw (®) ) Ao (k)= i; Tow (&)

(6.11)

Therefore, ﬂef*orqug Fourier +rqnsformat10n in the rel?bLU“b of

Symﬁét;y (3.43746) for the functions (X} and F1(X, , we

obtain st once the symmetry relstions for the Herwitien Pnd

snti-Hermitian parts of the function W’ oo (K)

R

(L+Ppp) Do (LL) = (L4 Ppp) Dues (- 1Y)

(6.12.1) i

(i’pyyl)%iu&(a’;‘c“'):“(i“pj:f')bdw(‘%l’) (6.12.2)
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®
_yi -
@&
+q! !
” (1+ Pyy') ﬂul\o(@iiﬂ )=~ (i"PrI") Ras ('q";‘.'q) (6.12.3)
‘ / !
(i'Pyy')ﬂdw{lei): (i’Pff') ﬂJW(‘q'{“q (6.12.4)
Let us now determine how ﬁﬂiu: and qum} may be found
using only the function F"_’(X) y the only one

for which we have 2n explicit expression (3.30). For the anti-Hermi-
tien part, the relation (3%.3%4a) gives us at once _

- ()

cq—zﬁlx I -
(S (0 - B FS(0) dx (5.15)

ﬂm(g“")%’!&w(‘-‘—zﬂ')r%}?

-

- Comparing now the eguations (3.33) and (3.34) we see that due to the
causality condition in the form (3.13-14) when X >p
F)=LFes, ena P (x)=-L PX) woen X< O

These relations msy be combined as

—

_ €(x)
F‘d\«?(x)” ”‘i‘ F(X) (6‘14)
whence we at once obtain

’

" (x)(F'zS;(x) -Fpr RS [—X))JQ( 6.15)

G (32

We may point out here that at this point we meet with the first

inaccuracy of the usual derivation. Indeed, from (3.33-34) we are

able to get only the relation of functions 9 and F”-’
for X>O,X<O y but not at Y *+0 &. But the

function h is strongly singular st zero, therefore its

% ® »

e

Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0



Sanitized Copy Approved for Release 291/§_/1_2 : CIA-RDP81-01043R000300060017-0

woltiplication by the discontinuous function €(x) is not

perwissible uatil the rules for integreting such nn expression near

vero are worsed out in full. The =sbsence of

to divergences. Herec, we agein have the ssme situstion as in the

notstion of (%.15) in the forwm of 9 T-product. Let us recall t

in conductins the analysis of vscuuw watrix elewents ia Sec.4. we

we wont to pass

B discovered that such =z situstion

from "non-Green-lixe" fuactionsto "Creen-lix functions, znd that
in this case there sctuslly does asrise a certsin =2rbitrarinecs,
which way be expressed by =dding to the Fourier transform an
arbitrsry polynowial. Therefore, in olace of (6.15) it would be

more asccurate to write:

' 1 ;e - ) . '
Duo (5] =3 )€ 2 € RS - B RSt Taal )
n' degce
with an srbitrery oolynomial‘{‘1 = 93:’ (3{—7") It wey be noted that
the origin of this polynomial is essentially connected with the
behgvior of rﬂw(ﬂ,;?i/} at large q‘z—i"’ . Indeed, if 'To'fw”?')
decressing sufficiently rapidly wheu q-(%'iw-—; < , then the

Tourier transformation inverse of (6.1%), would define the suffi-

ciently reguler function | VIR) {)() , the waltiplication
of which by € (x3) would not be connected with sny =rbitrasri-

; '
ness. In the case, however, of the increassing of '71“’(15_‘2) at

infinity, the function haw (’() becoises singular at zero and its

multiplicetion by E€(x) is devoid of any direct weaning. Ve
have to give meaning to such = product with the =2id of a certain

regularization procedure; and here it is that the golynomial 9),(.,,

arises. It ie clear that the power of this polynomial

€
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93 -

]
qq.g
is determined by the order of incressing of IT-':h-&( 2 )

0, ol
when 9—;—1 tends to oo .

For further construction, we wust go into the details of our
system of coordinates. The usual center-of-mass coordinste systenm
proves inconvenient in this csse, because it lesds to addition
singularities in the energy dependence. For®lhis reason we will
make use of the now generslly sccepted system, in which the sum
of the moments of the nucleon, prior to =snd after scattering, is
equal to zero,

2.2

/3 tp =0 (6.16)
This system reduces into the laboratory system when considering
forward scattering. (Below we shall deal not with the function of
arbitrery combinations of gpucleon snd meson momenta, but sonly with
the functions of momentz that satisfy the conservation laws, in
accordance with the g— function in the definitions of S(J,'i,u',#and

Hld g9 )-

-2 ==/

In the selected systew there will be P~ =p and,
F2_ e
in virtue of the energy conservation also q =9 !
Frow the momentum conservastion we obtsin then
-] >
> 99 and G+3!) B =0 , (6.17)
SR i w7 Rt
Therefore we may put
—¥’+ - >
Q——ﬁz = A€
. (6.18)
= . = 22 - -
where € is the ott normal to pie==s=te: l; ep=o0.
With a given ﬁ? , the ort & may be consi-

dered as fixed. For the second varisble we wsy choose the scaler }

&

®
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Then
-2 - - . ——b'_ e - (6.1
q=-P +X€ ; g =p+Ae (6.19)
°= ol _ - L o2 -2 2
9=9" = ‘Jmlfp’h\‘, q =§%=p +A
In place of k we umay also use the veriable -
5 Sagse . -
E = \m2z4p2+X (6.20)

which is the energy of the meson simply.
Ia the frame of reference selected, the expressions (6.13,1%)

for ﬂdv& and §Bduo. will now hsave the form:
- 3 '(Exo’)\gg)
Duo(£,2)= % [°F ) ppgian )

and

£ P)e A [pUECRER)
ﬂ.ho(E €/= ~-j L ,
) 5 € 8()()0)( (6.22)
where we denoted
- W] (-) :
The introcduced function g[x) is, .strictly speaking, 2 function
not only of ¥ , but slso-of the aucleon momentsa F;
g . . . a4 .
and ;) . However, since in our coordinaste system P is
> -
expressed only by f) , we mey (by fixing P ) consi-
der 8(1) as o function only of X . The expression

that enters in the exponents in (6.20,21) and thet is considered as
a function of E , will, in virtue of (6.20) have

branching points. In order td exclude them, let us introduce the

Y @

)

@
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-
operations of symmetrization with respect to € and antisymmetri-
-

zation with respect to € with s division byAand let us put for
¥()\,€):
Yz 20\ C)=£ (7€) +{()-€) (s
and .
CLA(N2) =5 {H(NE - £( A, -B)] (5.25)

Combining now the expressions (6.;21) and (6.22), we obtain an

74 et
1ntegral representation for

C(Ex®-AEX
e (E,e’) = }6’ 9/X/g‘f’“ff’< (6.26)
applying to whiéh operstions :j/éa and 0{@" we obtain two
new integral representstions ‘ _ ’
_u.l 'S 4’ -~ ; . : i
Yo T (¢ Zf X e (AER) B(x%)g (xjalx (6.27)
and

£ LEX® Jin{A€X) , - :
7 K ( __ ‘.2( At '_ih A€ O :
Ol s (Ei€)=F]€ o 00C) g (g o
These integral representations will serve as tne_basis for
deriving the dispersion reletions. For this purpose, let us

consider two identities:

’""i ﬁu2¢§
PJ (wr-v) ﬁ%ﬁ%if o

vt

ey L )

and

Ny

.e“‘d‘ dw\r—'_ E 7 PJ (Wi. 5“" § (6.30)'

w-V VL\,? i2

" the validity of which whagtne conditions

........... -l»>"§)>o (6.31)
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are frlfilled is checked obviously by calculating the integrals on
the right-hand side with the 2id of the residue theory. Indeed, it
is not dlfflcult to convince oneself that in performing (6.31) it

is always possible to select a radius of the large lockirig semicir-
cle so large thet the negstive terw in’sthe exponent (which term
| oW
originates from e ) would be greater than a possible positive
term arising frow the sine or cosine.
On the right-hsnd side of (6.27) let us now substitute in

cExo
place of the expression e &s{)(’k@’() lt° integrel representa-

; tion (6.29):

/ R Tm (t:'e)

. - o gk B
=2 (ded(x 9(x) PJC‘E' g o lEtp X o
Lu s CE-E o (6.32)

To what extent is this ubqultlthQ justified? The integral repre-
sentation (6,29) is valld wnen iulfllling the -condition (6.31),that
. ’ '« —_‘ . . . - . : .
is (since the modualuas 4 is equal to unity) in the 2ssuuption
0.2 -~ . . ] N
)( >jx]>0 . Folats with negetive X doesnot toue pert
¢ . in the integretion in (6.27) dae to tae fanction Q(X/ _under
integreal. Again there will be no pointes *"1tJX[/X)O, since in

Virtue 0f tuu cearality condition (3.13%,14)

convzrtad into zero uut;.-ii’le tie li,ﬂhb core. Thue, the only "denge-

/6.29/ being justified) in the intesral over i)( in (6.32)

- . o] =2 A )
tight cone with X :‘)(I>O . For the iantegral

in (6 3°)Qeau,@r E/, such soints

do present = Aiffic aity

o

?

——
ot
-

N
-
-

. o 2 . ) . . .
since at x:h( integrzl over the resl axis will be diverszent,

and, consegaently

there will be doubts az Lo the velidity of using

[&)

3
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© .
the integral representation (6.29). We wny, howevevr, imegine thst

e subtrection procedure of the type explsined in Sec.l (Below w@®

shell actually ap%%y ﬁﬁis subtraction prodedure) hes been applied

to the internal infggral in (6.32). Then, even a rise in the sower

OfEHILthe denowinator by uaity will be sufficient in order to

méxe the integral over EEL convergent, but then, by eontinuity,
. .

its value at X% I¥| will coincide with the limit =t IXI—=X® of the

sawe integral calculeted in the assuwption B?Iéxoby closing the

contour of integraticn in the upper‘half—olane. By adding (through

the use of the subtregtion procedure) = lsrger number of powers

E‘: inﬁthe denominstor, any derivatives of this integral may be

wade - éontinuoqs, Tﬁué,.the substitation in (6.27) of the

expréssioh. ecEx°.Gﬁ.(Aé?iU : by itsaintegral represeﬁtetion

(6.29) is velid - ":(at any raste, if we have in view the fur-

ther applieetion of subtraction procedure).

.Let us now change in (6.32) the order of intégrstion over X
’ . i o (] : : :

and E Gt
et

YT, (E,€/=

o

o0 ‘ ¢ - v~_—d~ﬂ -
=17 P ijEEI 4 jr”‘x ouelgje o g mex
I P -

This change in the order of integration is, strict soeaxing, un-

-~

6vzo\ bC+u o

P uii

|-t

L

. l

the internal integrsl over E and the exvernal intezrsl -
. ) , . .

over X ., ., were convergent, now for E ) lying in the

unobserved region, Efw‘dlwz , the internal integral over X

s !
L] . . \ .
space becowes . divergent, since for such F the radicand
: i g

. in the argument of the cosine becomes less than zero, =and the

trigonometric functions become hyperboiic, increasing exponentially

© N '

it
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@
at infinity. @fhis 1s an organic defect of the applied derivation of

&

dispersion relations (

). In the next section =z method of derivation will

be elsborated which will eliminate thie "difficulty of chsaging the

order of integrstion."

Bquation (6.3%) actuslly alresdy conteins the sought for

dispersion relation; noting that in virtue of (6.27) *he internsl
R e . wf ’oem .
iantegral in’ it is egual taX} T;w (Ev e/ i€ 06 onge obtain

o

Y2 Y
F){) X-é Talco (-/E; e/ “
J

et -
U Taw (€)= top| BT (6,80 v v

E-& w b (6.34)

where are those polynowials wiich sopear when substitating
(6.15") for (6.15). e shall not explicitly write out these poly-
nominals in the three fqllawiﬂg eqastions 2o =25 to reburm to thew
2gain in connection with the subtraction procedurs. {ow taxing the

real part of {6.34) we at oance find the dispersion relation

o T o~ ; 7y
D re) DS (g‘ﬂ (C j W,
X—é D(IQZQ(E} = 3}-‘} ) 'l:’;,*‘o‘(:;—“/dé
D = s

(6.35)"

Using absolutely identical arguawents, there follows Zrow the

ekxpression (6728) with the '5id b the intvgral-represents

the second dispersion relation for the couwbination antisymwetric in

. ) ‘ L\(\o Jy /E/)
0ty Qo (€] = 2 P A fealE)
J £ —E
. (6.36)

We shall point oub thaet in virtue of the rewnrk follow.ng the equa-

tion (6.32), fhe integrels in (6.34-6.3%6) may diverge, snd in the

ES
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@
at infinity. This is an organic defect of the gpplied derivation of
dispersion relations ( &

). In the next section a method of derivation will
1 be glaborated which will eliminate this "difficulty of changing the
order of integretion." e
Bquation (6.33) actuslly already contains the sought for
dispersion relation; noting that in viréae of (6.27) the internal BN
integral in it is equal to ¥& T::t(EﬁE?

, we at once obtain

’ ui‘

U;'.Em (E e)"“ J fe Te (‘T:‘,c-,/ + /2. (E)

(6.34)

1]
where FZA»(E)are those polynomwials which eppear when substituting
(6.15') for (6.15). We shall not exolicitly write out these poly-
nomineals in the three following egustions so as to return to them
.egzin in connection with the subtraction procedure. Wow taxking the

real part of (6.34) we at once find the dispersion relation

- . _ | |
2 vy ,
( T ﬁu«>(§;j -
T DuwlE)= i—i) }~a__wrw,m,, JdE
T E'-E o
.' e (6.35)
Using absdlutely identical arguments, there £4llows from the

O e g TEO000 46 28} Wit h bhe ~a2d  of~the dntegral representotion (6.30)

the second dispersion relation for the combination antisymmetric in

. ey 4 vC’l“ﬂ-{w(E" !
B 2 E)z- = e el
Oq[e @.m( ) = P—x E_E dE 6. 369

We shall point out thet in virtue of the rewmark following the equa-

tion (6.3%2), the integrels in (6.34-6.36) may diverge, snd in the —~
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case of t8eir being caleculsted with tae =id of any limit process
there will arise on the right-hsnd side 2 certain sdditional poly-
~ nowial with respect to f;- . Below, applying explicitly
the subtraction procsdure, we sikall arrive at dispersion relations
which already 4o not reyulire sach s provino,
wiesnwhile, however, .e way nole thst the relations (6.35-36)

possess also the drawbecx thnst integrstion in thew is extended

also 1egative energies. To gel rid of this drawback, let us iuake
9

«
O
i~

=]

wse 81 ihe properties, ectsblished above, of the sywwetry (6.12)

with respect to o substitution of the arguent é? by n—ff- . Ve
then obtain: o
Xé (¢* ?’/%1u(ﬁ €)= E/C{F' .
TZ ({ - Pff’) www (Ef ‘3/" = { -
Mg 1+ Fep ) B (£4) - A2 e
-~ "
Oté (/'?"Ofg”) Bul €16 & dE
Now let us return to the qae«t;on o* lm0r0V1nv tite convergence of
the integrsls. ‘e shall ascuwe thet the yower n of the polynomial
in (6.34) is eju=l to anity. T is lg a certsin sdditional assawo-
We wet sach a sltustion, when we had
wa do not refer tn =av concrete form of
the order of Increasing ol tae wabrix elemuaﬁ; =t

1nf4n;t3. ie LAClud ¢t by uhln; the uotfqotlan )"oce(mrn

. s ;s , - . . . _ )
developed in fec.l (/1.11/-/1.15,), which in onr cace will leat toX

x) If we assawe that the iategrels in (6.33) converge, thenithe as-
suwption n = 1 is obligatory: a higher power polynomial would not
be excluaded through the use of the subtraction procedure =snd would
:lead to an order of increasing of Q&w[ﬁj with energy greater than

linear, which would contradict experiment.
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1)
case of their being calculated with the =2id of any limit process
there will arise on the right-hsnd side a certain additional poly-
nomial with respect to f; . Below, applying explicitly

the suptraatian procedure, we shall arrive st dispersion relations
which already do not requiremsuch a proviso.

Mlesnwhile, however, we umay note that the relations (6.35-%6)
possess also the drawbsck thet integrstion in thew is extended
also to negative energies. To get rid of lhis drawbascx, let us nake
use of the properties, est=blished above, of the symwetry (6.12)
with respect to a substitution of the argument EE by —-ff . We

then obtsin:

e (1+Pj’r )Dews (€,€) = J%_ )’ Yz(i"Pn'}t: '"Aus (E€) de’
2

J E'*-E?
. X& ('L PT?)Y}JQ(E €)~ J ME))“"(“‘—"CJE
El*-fF2
Oze(up,,,-)gm(ge,_ oAs (LHLJEA:..»(E € J4e’ (6.37)
El!
Ae(4- Pf,}%.@sc’fﬂ - ’P} ‘Q_Gc(l-P":)EIjb.‘(» dEI

bll
Now let us return to the qaestLOW og improving *the convergence of

the integrals. We shall gssame that the power n of the polynomial
in (6.34) is equal to unity. This is 2 certein additional assawp-
fion; in Sec.4 snd 5 we already wet such a situation, when we head
to postulate (since we do not refer to any concrete form of

Lagrannlan) tae ordnr nf anrA951n5 of he mptrlx eLement° at

We may exclude it by using the subtraction procedure
developed in Sec.l (/l.ll/—/l.lS/), which in our cace will leat tox)
If we assume that the intcgrals in (6.38) converge, then the as-
sumption n = 1 is obligatory: a higher power polynomial would‘not

be excluded through the use of the subtraction procedure and would
lead to an order of increasing of P,(E) with energy greater than

linear, which would contradict experiment.

@

®
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Ve (14+Pyp)Bu (€) Ve (L+Pp)Bus(E) = °
‘—‘-*(EZ Eo) PJW Zﬁ(iH pp) funs (E') A E'
T (-
¢ ﬁ"f')y).lw(E)- ..éb’g(i—)jﬁ.,)ﬂ‘wjgoj= o
t.
=9 E 2 ~2) 1L - - ~1/
(E2e}) 2 i(E,g gy VAP ) Aus (€ )
1 : .
Qtz(if Popr) Dus(e) - E 013 (1+ Pmﬁ,,}zu,,, (5,)_- .
- e/ T l:"! Ea}/Ela' £.2) ¢
0(&’(’1 ry)y/nlw[t) (]é(i“PJ’P)DJu(tv)“
_ . = Q(E ED) i Jde(i \Pfj")ﬂdu“:)g._
- o (€“_g)(E-E3) .
where Eo is” anJ arbitrary eaergy in the observed region, ¢
that is t“o > y’—,;;_;’az ‘ a
- The integrals in (6. 3§\ do not an/ more contain integrations
over negastive ermrnieﬁ but, they =28 yet do not “ffl,ldJ 1/1* zration
over the. unuoservezi region O<KLEL \;Mg+pz ) whe're”
2 _ T -
A= E5-m2-P* <0 (6.33)
and conseyuently, the wowents 2re comglex. Our o SIiN! ow will be
i T %0 exelade tHiS 3nrt of "t integral. ‘
R ~ Let us return to the e;vwescic\'q (6.13) for ﬂwlﬁ'{—’/ . ‘.

- . .
Substitating in it the suus (3.30) for F (x) eni carrylag out

the integretion, we obtain:

fus (E,€)= TZS(E VMR +,\’+J [T )< Ps'l | 2(0) [AE,n D0@nljpidll p>

~3S S(E-Vpme + (Wi N ) Lp's"1 5 (0) |-X&n><AE i (0lpss® *H
Y -

e
Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0



‘Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0 | .

@ o - B
SEET R

For farther coneiderstion it is conveaient to icolate the terw with
n =1, for whicn thue qf%n:um ramber o i simply o spin-isotopic
n
index S and »4w:’4 . The suw of 5811 the remaining terms we
shall denote by EUHD(E) . Then ¢
. 7)< gy 2 2 ¥ i Y I
hidEE) T2 ' [plo KEs">< A8, 8" [(0)| ps> S(E - (uimt e (N47T)
' _ o i 69D
-T2 4,»'5'!;5,10)!r-xé,s"><-,\e',s"ﬁ [ ips>olE+ QHu‘+A‘~QMl+?)* )
S" f >
"— Bdm (E,e)
4

Let us aow recall thst sccovding to our 2ssuwstion (6.4

o
=3
©

-2 _ miy
P <MW2 /2 (6.44)

first S~—- faanction, in virtae of [6.39), is esventially Lositive,
sndy therefore, the firet suwu in \E.%D} disanpenrs. Ia the second
“suw, The coadition of the equaslity of the ¢ - fanction to zerc

lesds to the reletion

=6  (6.41)

¢ in BJ@fE,E} In this case,

[l

Let us now pass oa to th: suaws eatoerir
the -~ fuancetion in tine first and second suw for zach will
n

lead to

M -M*-m?-25°

2 {M*+p?

E.: Ed,g =%

@
N
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But in virtue of (6.8) the numerstor }que ig greater than or

equal to (M*W‘)Z“mz—Hz—Qp"-:,?(Mm_,'o") v e

Therefore in the first suwu, for each W

ot g2 o _ .
E-= EL— 2p > Ml"'_—ﬂ : Gores]
NM‘+F‘ T ~Ep

the latter in virtue of the supposition (6.3%6). However, in the

second sum, for each W

E; E} _ h4 ﬂ4 = -24_

and, consequcntlj, the root of ~ill be outcide the
region of integration and the sum itself will »e varte4 to zero.
Thus, the invéstigation of the regien of unobserved energlies
shows that it is divided into two subregsions
32 R L
TR My ~p : and () L E¢ HJZLP (6.48)
{magpe > B> b o ==
M2+ B2 : M +F
in the secoad.of which .
; ) - =)
whereas in the first: ‘

fes(EF ) =
—-].Z <r"$' ‘33(0“ )\e ">< -\€ S"'éfYOHP&)Q(F + \}NlQEZ_.\,L oMt ,'g}

Trancforr_ng the ©- function into S(E'E,L we find thet in the

fivot nnnhocarved anhrecin .

3 ngeeservel =Q2reglo
e

NYVE -t ] i

[

aslg @)= -5 B

1

> o o\ - 9 (6.43)
X2< '5' N2 N/ e’ njs N /
& <P y0) =€, 5" SENE, S o) ps >
For a further simplification of this expression, we sheall
consider the wmetrix element of the current between two one-nucleon

states

Zp"s" I {ploi| ps>
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In virtue of the translstion invariance (See /3.28/ and below) and
@ &
the definition of the current (3%.4) we way write
~C(p-P")x : wen | &S _
€TV g ol ps> = c<p's" 5 | P>
Passing now from variation with respect to %,(x) to varietion
with respegt to ‘fy(ﬂ (the Fourier transform for arbitrary 7 P
connected with \f,lx) by . . by the usual relstion
o 2 _
Yplx) = tzu)v Je ‘f,,(7)</7 )
we arrive at the equation
" n _of '
L(p“s"l IPS> Lprs df (0)] P$> S (g+p Y (6.42)
At this point we shall have to bere ap (’rermorarily until the next *

section) with still one wore de’fect of the ususl derivation.The
fact of the _gl_.atterv'is that the g.function in (6.44) arises, as usuel,
from the integral (Qii}q Sex;: {‘l‘(ﬁ'*]"f")x z;,,lx , which
nsturally h.qs~ ‘S - like groperties- only for real components ’
q ,.,:)’P”and'has no meaning i‘_or complex compopents. And in the unob—-.
servgd region under consideration we-have to use this O- funétion
(Cf.below /6.48/’) for imaginary sp'atial components of the vectors

q and , Pu - The wmatrix elemcnt to the left may be trans-

formed with the aid of 2.3 from Sec.2. The consecutive replecewent

+ : )
©oof permutations ol thHe operators ¢ 3“-{;:’) and-'*g;é.(ﬁ’?’wii’h : - S
by ~§—S-——— variationsl differentistion (with account

taken of the anticomuutetivity of the variational derivetives with
respect to spinor fields, and the right and left varistionsl deri-

vetives) gives us ss
<Flls"lm—) Ip s> =
:g Sd"'d’({g:;" (7", qj:\'(xl)L [‘WA{X} (F)] <0 3%(:()5‘?,!7)3‘#’)\(::’)‘0)

ey
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whence, using (2.26) and the definitions (2.3%), (2.34) of the

Fourier transforms WIX) and 57(X)
' 2N .n gs - —
L<P > lSWp{7‘JP>> -

= _9=¢ (9m)¥ S G+ =ame o) 22
= _9%( (2W) % Ui (p")<0] Sx (P18 1438 Yai i

, we obtain:

o> us’p)
(6.45)
/90: I}F‘H"IZ

" = -
= 73
iﬁn = VP""HL
Let us conmsider the matrix element of the third varistional

derivative that enters nere. It is ezsy to see thet the wost geunersl

o

(including reflection) and isotopic invariance is:

535S _
< O}wx(p')sw,«.,)mip) o> =

(6.46)
W W, 79 "
22 [(P”() ‘(K’ (Pd/} ‘]1\',\ Lidx )7“’-“’1( PZ’P : ql) X'(/’*'?‘P"}
(-)"U,;O,L )
where h Wy Wy ('/9_{" " og2) ere arbitrary scalar fanctions

. . . . p e
depending only on three four-dimensional squares IDZ , F and qL

It should now be noted that the metrix element to the left

. passes into itself if we perform in it Dirac coniugation ond then

RO . .. ...

me traas—

caa Dw: et t omema ¥ . .
transpose /) and /0 ’ . ter performing the

formetion on tae rignt-hand side, we arrive at the eguality

2 (Pg)w‘tyy(Fu“u}f T,'P j'iw.u); (’Fz‘igua_, ?(_)-_-

w,w, =0, L

_ wn we A N

"g o(J.PX) XS (P“X) 144 }'qu.n (PZ) f’w) 72/‘
i =0,

wheﬁc‘e there follow the rules of the complex conjugstion for

the scalar functions lq Wy WD :
*

L 2 ue 2 — 6.47)

Wy Wy (P ) F J q }‘ )'!u' Wy ([7,"e) PL,?Z/ ( i

]
e -
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In our special case, the cowponents of the womenta and
& ’ /:)
n . , . .
P are not arbitrary, but sre fixed (since they refer to

- . . .
the states of resl particles) by the relstions

VFeen? | po= [pver = [aien (6.48)

And the component of vector 7 sre determined by the 3 -
ofunction in (6.46). Using this definition, the fact theat
o ,A?é? and heving in view (6.39) and (6.41), we are convinced
that
q°¢- ;z_q.a:mz (6.49)

.Q

Finally, the spinor auiplitudes o 1Pq 04+5¢p) sstisly

(in virtue of /2.32/) the Dirac eguation:

u*‘ (P")(d’p"/ U (@M (£p] U™ (p)= Mu*5) o0

Therefore, if the wmstrix element (6.46) stands between two spinor
amplitudes u*s"(-,‘:’") amd UYS(P)  , end (6.54) mnd (6.50)
are fulfilled, then it may be replaced by

Y: Tp3(prg-Pi = N“HHU}"%..,M,‘(H M¢

W,w,=0,1
Let: us introduce the deslgnastions:

e ot -

%(‘]*}—wzu}sz Mthh»ul ,H ‘i‘} (6.51)
1,w,=0,1

It is easy to see that in virtae of the rules of comwplex conjugation

(6.47), the fuaction g(9*)  tuas introduced is resl. Mnd finelly

it is clear that its valie g(mZ} st gt=m?

would coincide in conventionsl theory with whet is celled there the

experimental meson chsarge of the nucleon. -

a g i
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Returning now to (6.45) snd collecting the results, we obtain:

LRS! f;f—;; [Ps>=1g U @ENTP U s(BIS (q4p-pY

that is, if we recall (6.44),

< P"s“lJ;(o)iP S>=ig U BT Ut p) (6.52)

) ;/z Pl
at PH” »../3 = f) =p ;9 = e
Now let use split the spin-isotopie index § into two in-

dices: the spin index 3§ and the isotopic indes f , and let

24
s to toe nonrelativietic case, lesviag only terws up to (Hg)

order (hﬂ?h;) .

will give uas

1] - % N P -~ 3
U™ (I T U ipi= -0 Lo (2 p o),

Jsts (6.53)

inclusive, anddisrszarding th

Then the osual suwwetion over the

in virtue of which

—~ !.a N
o 72 L F
~ t{— o T’I/‘. [
_,) ) ! CheS4)
/_,' '_\:
for the current wstriz elzuents en-
pasclng everywhere to fhe
on A

A/L)

(E 2 L7
}LQ“:'{) LH*%”E EP"‘('\"PL/!M +AA (P _:'s)jx
: / (H.55)
[ (6.55)

o i Sue - 16 o Li{‘ J

Applying to it the operstions of sywmetrizeation and entisywnetriza-

tioxn, r""""_/\"_“‘;ﬂ'ﬂ—'“"—“‘*—'v— g it b fre—«(;‘ﬁ-»u-‘-u"c» we- QM
Wltk L) )L;Lt tC < VL2 ! ;] ]{/‘/'(1 'Swv‘wwa.t%il.ut'l e aad w,./m,.u

Mavhim o Yo chesge b ed Aut-b)  we SV

20
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V2 (1 4+Pyp) flao (€1 E) = i (£5) S(E-Ep)Sss (NF ) oS,

[es)

end

XC (i - ,ff )”.lu (€ E) -Yid (QH)J(I: Ep)g.ss ('\71[—3 )é}ﬂ,.. ,“f((,, 573

- . 12 (ef’ns'
ag[l*/%o/')ﬁ“”(e'e):yﬁ‘(%jJ(E'EP)XSS (‘w EJ’P dq! ¢! (¢ /1

8 R ; > i
aé’ (i-Pfrl}ﬂJw‘C'E) = ?M {2‘4’7) O(E‘Ep} (é’i) 3.0;“"’1"" Lt:’f,H "

Subvatitubins

wn N e
(£.3%) ond carry
we obtain disnercion

to integrate over “the

st ke sngtribution
but its coutrisubion

outoide the intesrel. As

we heve not suacceseded in

for forward scatterius,

in general, since 1t wi

Foden Elal g ma
[VASRS 8Y GiLl® Fo 1 waafaus

®

CH b

Here we shall not write out the explicit forw of the

relations with the terw that tesses sscaunt of the contribution of

the unobserved region, siace we flirst want to
tering smplitudes considered so far tihat asve =2 definite syuuebr
to the amplitudes tnat corrasepond to the scaktering of particles

B : o )

in concrete spin and charge stestes, which will b2 done in Sec.S3.
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. . 3.4

spersion

There also we shall write out in the final forw the

‘relations foruulsted for the last amplitudes thet ore of direct
- o

in%erest t¢ the experimenter. However, before pasting to this

purély«iechnical problemw, we want to devote the next csection to the

derivatiog~of dispersion relations that are free from the objections

mentioned sbove.
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Sec. 7. The rigorous Derivation of Dispersion Relations @

(&)
Let us now pass on to the rigorous derivation of dis-

persion relations. @

In the previous section we had to do with the Fourier

B transforms :
3 /t—)",‘ /fe_/\;) _ (; .
Tﬁ) (£ = /é ( , F, . )[x/ o x /52&/
taken at Xz__ EZ_ (mzf/;,,)( . )

Now it will be more convenient to consider these expressesions
as functions of two variables £ and 7 » Where

SN ( 7.1)
Let us put '

i roilExe el ER) (7.2)
Tw[E,i‘}:j €

and S Ly? il ) ;
Tlow = 7%= [e" 5T gy 72D
. J .

The vector € (perpendicular to P) is not éxplicitly stated

in the number of arguments; the indices %, W are likewise not
written out since here this will not lead to misunderstanding,

... In order not %o deal’ with the duplicity of the square root .

we shall always consides ( as in the preceding section) not

the functions T themselves, but their symmetrized or anti-

symmetrized formss

\SAT ll S: Ué-){/é— . ‘..—"
It may be noted that

wt s
ST (Ez)

-99-~

®
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£ & & =
o) W “ i
% " i “ - @
f
(] €4 -
®
) 0
- b h
"190" [ I
‘iﬂ/‘ A ® ] . O]
’ ' 1s an analytlc functlon of E f, regular .in the region oo
> ® q
In& > /Im x|/ - ®
and ipso facto the analytlc function of E O , regular in the o
. regions O s ’ o o) -
&) N\ K oy & .
ImE S [t \/Ezt—/ ( 7u4a)
And quite analog;ously N
O] )
(= ) 9&, -
ST (Ex) B
is the analytic functlon of EI'Z‘, regular ‘in the, régidn
-~ ’ "F-_’—A‘T . “
TnmE <= |Imie%c'] RGN
Let us first consider the case when T is fixed and has
a real value: ) . ‘ .
T<-P . ( 7.6)
In tr;is case .
’ N g | - n
LI ‘Im\)52—2)<].}.m£l if I.E £0
and therefore :
-~ at - . ( 7'7)
:;T’ (E,C .
is the analytlc function of E in the region: Im£ > O
. and PT*"L’/E r) ' (7.8)
in the reglon  TWELO. .. -
Let us take their difference -
. . ST(ET)
for real E and let us repeat the argument of the preceding
section, which, however, will no long contain now unjustified
elements, since in the case under consideration not only E
\ ﬁfﬂ,:.i\'/ T
but also\ always real. '
== N _S
We find out\[, £ i) ) »»»»» " ]jf.lD)\P;>
- pt LT / - (%5
ST(E )= -tie Bl B i) (i) (35
At (7.9
S“

\ PP B L '”f)» S ek Gl p3).

\\\ ‘M + P L

\ . 30

&
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@R
®
® L
® -0 -
® vp oo TrPt ( 7.10)
® ® Z / {1“1‘))& N o
H ( 7.1D)
G2 7 A R ‘
o pppy S
® - ~ ) y Yrp - I

Then, developing the expression on the right-hand side

(7.7), “we obtains ST(Ee)= Sf(g,g )+

‘ 250 L ey T v -(7+12)
4_22;@ ME/: r) S\/E-f,;m) ?Ei“f’z/ /)vz/u -7 iy (—xe/ ’é/ /"c//

o
Jmet s,
N
v o
( 9 Ut
_2 ¢\I-){?;:{'f‘)/)/&f{«.)92/"/’)/ U _/,))5 /,{ )é’) 2/,( (}“‘//ff (I’j
‘ ‘/Mz+ﬂ .
- = .
where . ( 7.1%)
. a , //:,{m +,,,L_5L_~
" , . { 753
S EEY)=0 W o[Ejg T DS

Z)z /‘“44_’5&

Already from ( 7.9j', (7.I0) we see‘that the functions (7.7),

(7.8) are one and the same analytic function 7 (&, T)
I»«E"‘ 3

regular in the reglon with cuts on the real axisg for

1

rE @ : . ’ 7 h, S X L R (Mg plo
A - e e e . . ~— 3 = - - —
~ ) YIIL" -/ g .‘;:1 . ,
_Z_ H,(z“L CyMtp

and with poles of the first order at points &£=tC5,(2)
Approaching the real axis from the upper half-plane we
obtain a retarded function, and from the lower half-plane,

an advanced function.

Proceeding from the definitions ( 7.2) we may note

@

[
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that in the case under consideration whenT is fixed

the analytic function 5T (6T, may increase st infinity

( when |ImEl>850 ) slowly than a certain polynomial.
Thus,‘jf(F,;) has properties that guarantee the

correctness of apoylying the Cauchy theorem:

~ rect - D Arrtr
ST Eg= &5 “Teen g ghePY Ay ;
rad -J)a .,’—é',/""‘g-'b'/ ./;:‘Ep‘-:) - (70]:14’)
S0 D~ R
H 7e; 3¢/ b Nl -
e P AT e WS
E+Zpt) )(l\u/ -

where n is a sufficiently large integer, ‘:, is an arbitrary
real parameter, which we take in the interval (7.II) so that
the denominator (5/- & e does not converte
to zero in the actual region of integration in (7.I4).

Further:

Aleys -2, "Bkl S’{dzﬁﬂf)a‘;?} WP ey (7.15)
L ¥

—— ¢
'J”(-f?) J’x‘?f’a“/ﬁ)J 4
\Jltl 1‘/ E,’{?')V"l

fl((z-frl ‘u

g(r):ulm

{ufs(/’) s ‘f'u Hare) ) -

{ ) He oy u" (/9)7
It should ve emphasized that we established the "dispersion

relations" (7.I4) only for negative T  which satisfy the
inequality (7.6).

Now the real dispersion relations that were spoken of
on are cbtained directly from (7.I4)
only when it proves true also for T = mi+7

In order to extend the region of T  for whaéch the
relation (7.I4) is valid, let us make use of the methods of
analytic sontinuation.

It should be noted that the function 5//5/7) has the

following important property of analytic representatior;,

namely jg/g,z):F,7/‘25‘/,4,:,/;1,f;t}kg{;ﬁmfﬁ} (7.16)
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it £t VE-T are all real and T< (#A)m*sp% j‘ [#.18/
Functions introduced here &(5 t) 5 T)
are generalized functions of the .real var;able j

and analytic functions of thq:omplex variable T ,regular

in the regions
_rj'szef < 4’/”9);442 ; [Im(‘!'éfmz' (7.17)

where ¢ 1is a certain positive, sufficiently small numerical
multiplier.

In addition:

'k’ i)‘o /)f /L{ 2
F0,030 ) gor §< LMmeme-p (7.18)

Before passing to the proof of representation (I5) we

shall show that the correctness of the relations'for the

5¢ follow dlrecfly from it ]s'

- ml+/9

>
19

required values

et i %‘) !
For this purpose, let us again take negative T bhat
satisfy the inequality (7.6). For such 7T both the repre-

sentation ( 7.I6) ( as we have temporarily accepted, prior to
the proof) and the relation (7.I4) ore correct, Then substitut-
ing (7.I5) in ( 7.I4) we finds -

-2 L -1 \" , -2
§FepiEe A SR, a2t
E-£,(t) E+Eplt) ,71”) g
(esus

where w f J,f‘}/u{«p JC) AE '
i[f;t) ":5”2/ _Néf#;*_._mm.., e

V. FLE
AZHI kt ZWW*E‘ )L/‘ 2\4{% t i\7 (7 21)
J‘lf‘/ \ |
. u /m/: {Z.E Jaip? 1 T) A
270 /. -
¢ _i ( E'fz )Hm' = £ #) /
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Let us take an arbitrary EJ in the interval

; (7.22)

Then in virtue of the established above properties of the
A F; F.:_’;
functiongfit may be noted that the equations ( 7.2T) define

<

the analytic functiocn 0% £,

in the region :

;g DT | -7(7625)
i let & (l#p)mey |[Imr) < me ?/J_M T|< 40t | InE]
On the other hand o T (E,T) is analytic in the re-
gions (7.4), ( 7.5). Thus the analytic function
ST N el el
{,;T\t;u) - PER) L (FSESD)) (7.24)
<
is regular in the region
P el T (itp)mE  [Tme| < pind ) )
(7.25)

[Imzl< &bt [DnEl 0 Dm0 1~ IT<E]

In accordance with (7.20), the function (7.24) for negative

~

T » that satisfies the inequality (7.6), coincides with
the polynomial
JIT-P) AT (E-E00)) 4+ 4° (TP BE)CE-Ep®l) = (5 oy

NP i fold e
FOLES-E D ) > e B B
\9“54’54/‘
Therefore it must also be a polynomial with respect to E

throughout the region of regularity ( 7.25).

Since, on the other hand, (), LJy | £,/ are
analytic functions of T according to the very definition
(7.10), ( 7.15), we see that ?Z(r—ﬁf) and ¢, ()
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should allow for analytig continuat%pn;
Let us take any r=c* from the region.(7.I7) that do
not lie on the real axis: - Imo* 20

and let us construct the corresponding E=£# ’ plitt;ing

* t
E = Eg f“gt'
where

ZEQ_EL‘ =Imz”™ ! EZ 40’ /-= ,;—&24_5."2_& ,[.1-70

. ‘

It is clear that such €, r* belong-to the region (7.25) and
. A - . .

therefore U  should be contained in the region of the analy-

ticity of the functions 7%(7-7%) , L:(D)

-

Hence we conclude that these functions are a.ﬁalytic in rth‘e re-
gion (7.I7) with a possible cut lying on the real aiisw.__"'ﬂ%ml@ﬂ
show that in actuality this cut does t exist, so that these o
functions will be regular throughout the region (7.17)..

For this purpose, let-uus consider the real _2}‘2<(/fr’) mtep e

and let us set

,... . ‘v? °
T=Cr =0tdlp fzvr;./E:El:E&i 7E £,20

r - 2
Flp(np)mt < E°< ML

For a sii‘fficieptly‘ small ? ' , such [E,f/ obviously @re
included in the region (7.25). Let us now tend.. 2. o zero..
Now f(rom’w_'(7.25),' we -find
GE,, 1) > (E+i6,T) P EE) 2 R(E4T) (5 o0y
and, taking into account (7.16), we obtain:

¢(’E;)Tf) - Cb(E_’T_) - Sz \/EZITZ): 3 7-('521 Zz) (7.28) ©

®

Buad

@
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g “On the other hand, on the basis of ( 7.2):
& 2 L (EX2EX, ffz-fa gt) J
2 -, X

“' o-wf i
\)T E+, ) ‘J /)()\Ju

8

and therefore: 5 TY[E,,f,)-a S T (Ez, )

o o We therefore have

: I, ; \,f_,/‘ \.V T, - "'5,4--
N cLi _éhn{.)T(FﬂbfW'¢(E+>“)]' Chn 4o T(EE) - P (L,

3

~

Due to the fact that for £: , Tt the function (7.24) is
equal to the polynomial (7.26), this relation willwobtain for
‘it also.
Hence, it follows that ’ ‘

PG A AAE 7/

tend to the same limits as jz'(g‘_,‘? Y (Zz-c'///“
. Thus, the cuts for the functions 7‘,<g " under consideration
does not exist, and they are regular throughout the region
(7.17).
Taking note of this fact, let us return to the relation (7.20),
<J>~»~1 - which as we now see, obtains for the points (512'/ of the
region (7.25).
_But the analytic function of the .complex var
bn the right-hand side of the above-mentioned relation is
regular in a broader region, in the region & (7,23%)
We may therefore extend the analytic function o 7 (£,T)
in such a way that it will equal the right-hand side of (7.20)

throughout the region ( 7,23),

5]

®

®
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It should be pointed out that for the analytic function

S T(b “) extended in thls way there obtain the usual re-

/ lations with the mﬂproper limits
S
T (Erie,t) = ST (ED) (7.28)
® / I / a’lu o
\;7—(5-:6,2"): 37 (£,0) ®
) @ S (7)-29)
e s N ‘
if only €,¢ amel A2 \/[2‘,” ) are all real, and &
TL (1) medpY
9 Indeed, on the basis of ( 7.2)) we see thst & N
. é“m JTL/E“ L)_ mar(t“ ,n;xEﬁ') . o
® 320 &
2)0 / E 2 -{
e : A ~
But, on the other hand, given sufficiently small © ,the
point ‘ ;o ¢
Ef:Ef-t’() 5. = :f[JE,)]
’ belongs to the region (7.25), in which we have the right to
make use of equation (7.2) and to write: . ®
ST(E+iS, veinET)x ’
O S I = 1
= 5 (é%ﬂ{—éx%s X& L JEE-TH O, Ko-x & e JEE-0 F & jotx
E J )
S . ,..,},,L.. E’E'_E?'L{Q e R o o G . .
?/;
; due to which fact Oim § T(gﬂ'é‘ T waEa) 5 7- ,z)
Analogously we verify also the property ("7 2I). We established
the relation (7.20) throughout the reglon (7 23), But
5, L-WZ*,SL sy together with any E that does not lie on tlee real

axis, belongs to this region. Therefore, (7.23) is ¢rue when

@ —~ - - 9
Imé& #0 T= i"'lﬂ?}
© /) © & ®
© ®
\ :
®
®
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By a reverse substit®Mon of the variable of integration we
transform (7.20) to the form (7.I4), in which in place of
{ 32
5//5' m2+/o) there will be the expression:
—_— ; e - _z/
(725500, 2.5 et Lol g s meqs mipts (7,.30)
F {28 eep® i 47 ,m’fﬂﬂ&/{E g e
@ @
coinciding with it, .when” E'C>merpe,
® The expression (7.30) is converted into zero ( just as

ST

SO E Mirg e ,

i B F( ’ 2 / ) for /E / \/ ',f“fy-::-f
S ) \‘/ M tp&
) @ In the inbterval:

(7.31)

'a'éiré;ﬁ definition of the function
SfE ) = ST U5 ) (7.52)
* by the intégral (7.3 )has'ho sense, and the expression (7.30) .
may be considerea as its proper extension in the interval
(7.31). - ,

f Thus, we obtained.tne relation.(7.143 hgging the reqﬁireé
value of T  with the extendsd function (7.%2). In order to
pass, in it, to the real E, we have the equations (7.23),

: $<,?729§$H_. i ,w.fé.wwsm,_wwwA,Mmb,mmmﬁﬁ“,iﬂ_“uwmwwmmeJWWNw.w%"
It is thus that‘thé validity of the dispérsion relations
of the preceding secti5n ;s,established.
In order %o complete the proof, we still have to prove s
the representation (7.I6), which we.shall now begin.
Let us use the equation (3.23):
‘ ﬂi;r-/—)/x"-’))

gow € wa (1) =0 <7 5! ) &’If“w /Igfi’///? -

e —\///y/b/'/,(/X///’J )

N

®

@

&,
%
| Y

2
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from which we obtains
T (52 18) L0 p 175 4240 =
, N/ AATEY
,hﬁ“,<ﬂ° gt g (4 - W/Q)Jf/w//pJ/c 2Ky

Let us here express the matrix elements (p’f/___ /p J>
by the vacuum sxpectation values with the aid of the prin-

ciple (II,3). We find

T SPP s ):7/ ,1/!.“1 L. ep oL
Ly C 7 TTs/ WFF 7 e /< (7'15)
2
: R NN AN IR
-t 35 et 2 N < 3 \ \ NEAN FS, -
= g L 0 t )= J £« Xy L8O U (p)-

’//:‘_17_ (/ jl/ N / PR \*IK/] f’( // ‘r// ot "/vr(("ﬁ /
. Y

. ;//,.u f"lt,
Let us now introduce one convenient notation, Let there be

a certain translation invariant function F~(%,., x‘,/' of
four-vectors A ,..., A, « As we know, its full Fourier
transform is proportional.to "/,‘V,f...f/%,/' « We shall agree
to denote by /V";(P/,..._,Vq/: the coefficient th_atﬂappears here and
call it the Fourier transform of F.

Thus, we have .

) APt Ve "'/'/ - ¢

i / -~ ) l; S /9. .

: Fix, .. 4 = /(',(I.,, 1K, = (/J,f..,f}l/,r/ F (,/u.u,/'.,/@«) (7.34)

J

USing this notation, we shall rewrite the relation (7.33)

T (0= (';,)g “/p)?/(/»,/)ﬂ:,/a/u (p) (7.35)

where | (7 56)
..p °
9 = . tPs plaptpstpe= O

(7.37)
Blx, %, x %) =

_ _:3___ a (X;) (x /X« /)(1)
= {0 swmwx;}{‘) it
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Evaluating the second variational derivative we find:

y()(l)"‘//‘t)= L\z ?jq (’U'-'/x") (7.38)

@
CISdsJ’) oo ) *
where Yies © 0B
; rt ;
( e Hgxs) Tuixg o
g )(ll.)'”/)(“)° \Cl —_ T T / >
uixy) jydd
4 P S
?)12/{,” Ay) ==X 0 /_,ﬂ Iy Kl / )
x{‘LF (X ) Jp-'-'qu:/
- a3 NI BN
S R O N P S5 LA L S
So) o)
7 T S g SN VRN 9.
‘ ARSI RN ;:.E__,)‘J_)_ : ~_,;){W! |0, (7.39)
jAfl(X;) ?.‘{‘VJ“J
W (5 o _ y. J R
N LK - )(;’/ B ‘CI; am A j;»"Xj)\ R Z)"//[/
Af‘l?“u Gy f’(}lg) )
(61 ' j !
ﬁ X5 VY E=EN ’l ! )(1_/ »»»»» ~ f'»« - l_,v-\!f.‘ r \)
’,‘u’;/ "‘f’v\J ' e
l]} ‘ . 7 A . ”\\(7'4‘0)
% A )"i) S Y | A Y/
/ {0 em -2 T AR i
31’\."11 3 1"J~_j
g\ oAy = - \'“/‘Q:Lx‘t/“" - ,.;"LX)Ji10>
g Gdle)
’ 345 _
Let us take the expression and apply to it the property

of completeness ( 2.6). We have:

(T) ;P o \ : ;
X, = (0 g I DN
DAx, ”\V)f N — jsf-.bx,«)’f'0>\5 fxaxyv/,5>-+

’ p‘.?("l) (‘711)(;/ ‘ e

(7e41)

o

O R ek 5e)] )
h 0 J

S J’LFLMI Jyin)

@

?
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@
On the other hand, as has already been pointed out in Sec.4:

\‘ "‘:I) _‘i‘-)LX\///l 0> . O

Sl e B N
8 Lix) 0y = <k o[ oy e
Further, the expression ( )i ,;(Oi 100

. ~ /';‘ o .;, > [~
4 LL,][KJ\/ - K «’(’J'
~
is equal to zero for one-meson and two-meson states, due to
~& L) bRN

which fact only states for which bnK) -4 z 2M) can

o5 .
contribute to the sum (7.4I). Thus, Z , considered as

a function of X, , is represented by the superposition of"

the exponents . ¥ with Py satisfying the
< «
inequality Py 2 om]
Therefore: ‘
.,\'l ;/" R . ro., .,)‘2' //é /y\)l
L ) 0oat Py M) (7.42)
Juite analogously we find:
TN ; ,e 2 <
,i:"( ¢ ﬂl - ﬂl]/”- r if 75 < oY "‘“’v’L}
D )= 0 if S (7.43)
N . oL, e
_T) P Pypzl if Dy S 2my
Now let us return to the relation (7.35) and multiply both
. 2 . R
. . . / Do pF )= Ao B
sides of it by ) (j+ 0'.'")/) - M /'T':'*J/' s

We obtains
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and note that . &
B MObpe, v =90 p pj) M }M@&M&N +45) .
. J ”/7'.1/)7.,,/ ,_/'\4 f’z‘}i{/ﬂ 4

/h””rJ”Y/ 4

M()‘m Xy) = j }, ’M }Ltl ‘J‘;'f/‘/ }WLXf /‘v/
Further, on the basis of (7.38), (7.42), (7. 45) we may write;

A r NEY) ) ‘ :
MXx )= 20M e ox) e Nikoxy) o (7.48)

L5agy 3
where ’ i
/\4((1)()(1‘~)(L{/= .
m (7.47)
R A 2 \4/”“‘1
= it *5el M !uw th/f/7 Xy

@

~

o aj ( f//
To determine the analytic structure of the functlanb’v oM
M ) fh
let us use the following theorem:

@

The translation-invariant generalized functions are giver -

Fijiv Ckxi,ee %m»wmwwwm:, <
which transform linearly by tne transformations h, from” cne

_Loventz group:

(i LX) < (L)
/E’j J L" TR [‘xi_}‘ -._;7_, ,/J)I)VI =y 1,‘
(ig Y'$L)

with the aid of representation A(L) of this group, which

representation contain the usual tensor and spinor repre-

sentations. 2
In addition, let the given functiosns satisfy the
s ﬂ &
conditionss @
Fz,z,v (%...%¢)= 0 ES :,,X' , K £ Xy, ;‘;IZ,Y (x.. xy) =0, A;{X,,Xq‘;xz('?.%) .
= . S /s . &
h,a,Y (Ape o xy)= O "3‘;"1,"42 Xe ; Faja,y X xgj= 0, Xg 2%, 42 % @ -
(@veiid
) ®
[©]
@
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o
) i - v v we 2o v ¢ ®
@
@
%
@ " @5”
. g
® .
13 LY @
= ® TR *
Py ®
“ o @ =
{0
EH
..113 - e
@ ¥

¢ @ Tj‘)/ﬁz’ Py ) F,‘y[f%« f’-{)-— “/ /)/“/M*"“ 1<6~4[M

J

o ; ( 7.49)
7, - F (,}7: //':k 0; L < ’/W# /M) }7; {g‘jﬂxi‘

AR tay /

where 7 is a numerical factor greater than unity, Mom> 0

- Fein (oo py)=0, _«ﬂh‘/”.« < (Mxm) (7.50) .

‘I‘hen it is possible to indicate a positive numerical F -

0 VQ

factorj}( depemhng only on o ) such that for /%,... Ay

W

i _belonging to the region

e N LY YN,

. - S Mg Mt py (g mt

_;,‘ i E Do A P: < ML1 5y mz_) nyi. ( I'*(U me,
S “a repres_entation exist

,7'\/ R

R LIV U
. ) ; 9< g & r
oy ‘/"“ Pyl = pi i z/’,,,01,/’;/,/’1,1/7117“{{/’(_/’/*/2;).435
N h 'w1th a fmlte nunber of terms in the sum.

Here, /\;t (2,2 o 24,7 Z,—,Zn’/ © are generalized
which functions are

[/947*// <gpme

& . iunctlons of a real varlable © z,; o

analytlc 3 lnr\/«

/"tlms of the complex variables¥, .. Z, , which are re- N

®
@ ] ’ gular in th\. regwn- .
B, T e
{ st

—— P s 4t ca ] oams PN S

. I((-( < /V) ohpoms L \'73 &L & it , ez, <5y

o ¥ m= 7 - wnl / . .
S 2. < M+ 1 ) ‘Q&i:l St gl M ,"’Mza’/\/ﬁ )Ml -

R “ ¢ I aG @i 6a Oy e 4o ss
e ’ ¢ (2,,...25,24] = 25 < (Mem)

® S
‘ Let us f.LI‘St of ‘all use this theorem for the composents of

@ )
[0} o) .
. . s the flnction M “‘1- . -W}
) “j .
Let us ts D iy R
® us pu'»'~:. T ( '“.A ‘// -~ j) X, L// @
® .
(€3]
g & ;
® B it @
B @
@
%
@ : ® 4
o ) & .
& i @
& Y
®
® ® }
s
&
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—]I#—
Y Gl < 8L e ,

soix, el

) ®

(l/ (X '{/) _ 0 ‘ D
1y%) = 30,0
" ferlts) T (x) / ( 7.51)
(0 0y Se ) SE) .
gZa (6 Xe) = Lo IF0 3 %ul)‘o7 ® ®

& 3 $alk)  SA(K) B

/ a< = - &Y,
Ty w iy ) AR IS RArS

d,d \
where, in accordarte with (3,4):

®

55 -+ e =
) D, , = N
AR FYRE SRARL o s

@ @

Let us also putb: : )

&

)

LA L},ﬁ (%, :

M )= 5 1, YUt G ) o
>

Now we may note that the functions %ﬁﬂ s, and con-
dJd
oequentlyr#ﬁil be translation-invariant and will be transformed

as the products of spinors.
0] (0
In virtue of the causality condition gQ‘ d’d have

the properties (7.43).

Let us now verify the conditions (7.49) with ¢ = 3, HEm
For this purpose, we shell proceed from the identiti‘es

bjla) | ol

v < ¢ L_‘-')LIYI)J‘(X)) —J‘l{‘y)-)(//l)_]
3gcy  A40G)

gd'(,@ _ Mm) . m)ﬁ 2) = 0 xZ)Jm):)
Sw(x,) W K).

s
&

epie a2 e = W e e e e B ww e & 8% 8 8

that follow from (3. 4) " ;ﬁ
Yy ¢ 9 '// ¥ )T
We have, for examplel: 92} /m,“vrw/- Gz S w ) I
(J() %’(.’/y ®
= 4 PANY “‘" o e Yol A X
= 0{‘)( ) (3 ]J\) J‘Q»X;)JU’.) 24’(/0/9>' 9

Applying here the compleuenesu.prop5ﬁ$y“%o thbe first term on the o
right-hand side, we find that its Fourier transform is converted

into zero when %3 < QM+W )L The Fourier transform of

the second term of the right-hand side is ¢
for.

onverted into zero

Pl < 3m)*
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o &
- L
* ¥ % * & ¥ ®
v
& @ )
m??“m,‘, .
t{, P @ & )
; ® |
® @
®
s -1 Ij'- P& ®
’ ~i), ® ~) @ L
'@.erefore. 1)'17. (f’ /"v}.'@m@ (.. /9‘//@0 /71<(M”") /’z<{3’”}
and Nn (P v) MA,Z (Pry--Pal=0 ; PE< (Mem) pf (3w
@ ®
) The remaining conditions of this group are verified in the
® ®
‘ ®
b ® same way.m@ @ ® ®
° Let us Bass, at 1§’st, to the final conditiong(50). Wie have:
) (/2,9 1% Ml p _
. io(g—;’ﬁ«%)»fM }1> (X Xy) =
. B 5 (A2 ool M x| no R [Blexdd]0 >
L. = (ﬁg/gé Jyé‘fg(@/-fzifm)‘a{/gﬁﬂ?; /Y I°2 (7.52)
g v agTE
o O ©
. > & s
. © /}()‘0‘5) { I @X;/ +/V/ / ClxAg)
o 3 . 8 o ‘ \,j
C( LXMX} !é)(; e Jg(Xz,XL{} 2 ,;j_é)fi/.
. & G e sze_x,} é\'ihxa)
: ¢ ° But TR
(. A X;
<0/(°(x,)xj)‘/nk> <f'}C(,X1~)‘”0)/’hK> LEnlkJA =K ]
- « (7.53)
2 y ® N ; I[t(k//‘\£~,()(£€'
o {ﬂz}!gu,xq}/w = k[ B -x)[0) ¢
@
&
€ “+ end therefore
N/ . P
/0/ /52()‘1,)(3)/ rUC)O:
= & = 29 —[ij(,k)x} K X’}
f;!% & .
=<0 !C(x,ﬁ;,(;}/ﬂk/z’/"f E (£ )+ K fe . (7 S
O the other hand, the expressa%q “
:)
657 Q
. Zng) 4l oy
' Sy ixy) ©
state © ®
@ ® is equal to zero for w:Lthout nucleons in accordance with 2
@

the condition of the dgonseé'vation of nuclear charge. For
@)
the states @ with only one nucleon

En (K)-R'= M?

@®

@

@

Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0




“ Sanitized Copy Approved for Release 2010/05/12 : CIA-RDP81-01043R000300060017-0

® . ) éﬁ )
as a result of which
<ol Alx, ) lwe > @
Thus, to the sum (7.52) only those states contribute, contain-
ing at._.leasty one npucleon and one  meson; for such gtates:
E,,(u) it 2 (Mromdi,
® We now notice from the equatlons ('7 52), (7.53), (7.54) that
® the@?unction on ghe left-hand side of (7.52) is represented as
a super~position of the exponents of the type:
exp i{ﬂq,, (=¥ ) 4Gy (Yam¥2) $0{xp-Ks ) [‘] ; KL (Men )
Introducmg the %sual four-vectors:

DIER T O AL N FE S TR Chi )

3’\1

we see that:
P )bzt 2 Miw)t

— Hence 1t follows that the Fourler transform on the left-hand side
of (’7 52), and therefore also ‘7\.2,& (Piyeey Pa)
1s converted into zero when ) , y 2
(Pptps )< (Mtm)
The remaining conditions from group (7.50) are verified in the
o g very game waﬁj.
G :’(l)
We may now make use of the representation of (1) fOr/V‘(p,,._,p,‘)
It is not difficult to note that a representation of this same
Pisee,Pe) . For M“{P,., P )

and M" Pryey P»‘) the respective representation is

type is true also for " “p

<wer-ObYBAnEE From (&) by.subskitubing B for 5. ..., .
Thus, taking into consideration (7.44), (7.47) we arrive
at the following result:
I pte Utpp, mt ) P‘Z< Wejme
2 )< Qrr)me /” ) < Urngmt (7.55)
3

’7
p £40 P mi

( f is a numerical factor, L 't ), tien the following representa-

. o ) A '/ 12 ;

tion abtains: {(11,+’"¥)-,‘HL}{\~’V*P¥)—M‘_}7 Tonl%)s )

— d © L @se)

¢ / e i

= ut iy W {p,eh4) uTR) )
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- IW-

_ 2 s p- 2 _ 1(/’,_77’ {
5 Bt s ) B P L A 0
\*P_zl’-r?)l e pe
12 B Lriplaldy P S e, 4T
in which

DT A I Ny al,
Lolppigls Gulprial
" are polynomials in the components of p:Ps9 , and
(4:, {5, 25) are the generalized functions of the real
variable 75 » Which functions are analytic functions of

the complex variables X7,--- Z_{‘ that are regular

in the region:

Rez, < Mévgme, Rezy <Uleg)m™ ) Roae <5 mt

f&ll <Mirgmt Rezy <{les)m [ Imzy]< g M et 1y
L. . . C T e

In additionm, P (24,. .25, 24) =0 WREN 70 < Agg oy J2

Let us make use of the result obtained for the interestin

case when:

po= P VME B Fen =y RES VWSS Ve
.3 22
‘7 £, ‘? K&, &=l
A4 Ei T E}.

taking account here only of the dependence on the varlable;
Taxing note of the fact that the operatisn S cancels the
oad powers O]E A from (7.56), ‘(7.57‘),‘_“@ find:

(T P~ YE (MY ”} TET)=
= Y MYP T 28/ MR, rf ¢ M+/9+WZE‘/ (7. 8)

if 3 /o Z —
T-p < itep mt. E°>T
Here ¢{ { ’E,T ) QDL(&T) are the generalized function
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n
© ®
- % -
s
@
i of the real variable f’ y which functions are analytic
functions of the complex variable T y that are regular in
the region:
Pele) < (1rg)mespt o [ImT| L fm- (7.59)
o
In addition,
B / V2
PGy L for Lo Mim) (7.60)

=~ —
‘?lLSJZ ") /} I

Let ﬁz’ be restricted by the inequality:
Mo = (§+p)mt

=2 - R
p <

IR
Then )r.5% t ¢ 0 it teple Z,'/i'fm +mt

Therefore, we may define, with the aid of equations:
; i 2 -2 ~

Eleey = abrMiert o

P / L z +ﬁ 2 t

bltrutept, T)

sz/tlr) =

Qr+pE -t
the generalized functions cf t s which are analytic with
respect to & and regular in the region (7.59) in

such a way that .
F lt,x)=0 ' :
re )7,’ for LL < Zr‘(/‘h +m ‘_/,3i

L Ptk

Taking note of the fact that - /{£:7) coincides with.4/z)

5 2 -2 ’ .
waen /[ rp5e )T GEZ 4yl 5 Z0
we obtain from (7.53) the final result:
e e T o _ — N
‘_),}// b,:,) = K, \Zt‘/,’iﬂnﬂ =T7) f’!-z \/“)E'//'/J'f,bﬂfa ;r) )
which completes our proof.

g
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to the mathewatical appendix,

_____ Floe, F oo

Let vs consider the generalized fuunctions / 2 5

"advaenced" resgpectively:

o

four-vector X , which are "retarded" and

/:‘; ) - / "
» (o) = jfor Ll

1 4 .
¢ T } n . -~ J
Fo (x) = g0 x 24
. . . N 7 -
and denote their Fourier transforms by Foos /~7 (s
L2 . P
Then, 1f for some 7& holds:
v ~
lf7 j /:’f'“ = o for 0% v %= ! 3
(P ) F o Tor Pty o= e 2
T
there exists analytical function Foej 0of conmplex
- _ the
four-vector « , regular in domain:
lk”lxj N 7l BN (x o ey o) (1
where
: = "‘7' /<
.- = A (Y
For real  ,belonging to this domain holds
v ) E
IR T N A
""q'- being given =znd arbitrary larze numbers o,
/ Tk
being fixed one can construct independent of s, functions

N

-
which belonz to the class (7,

1, /7, end have period < .7

-
.

with respect to 9; s such that for every A from the domain (1):

£y .:/“iu,p)f?m) + H o) (o) fdp

21

. , P ) g
A ) SACIRE WO FC R |
/:,(&1/3 = /, - . ) ([‘ - [ ,:)
/ ; | , 18 (<

JO/(/r"—j‘e_"’)// (= 75&7)

(1$x23)
@
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o o
° L 2
@ ©
L]
@ ) ~'
® .
@ &
® ®
- - ® ®
2 R . .
1 @ @
Theorem ITI.
e e e e e e s %
Let us consider generalized functions e «
s T ® &
@, . ’ R
[ 'Y - :/—9 °
2 ;o Ly A
@ & I_“ . .. UGN ®
for which hold. © e
1—7 ’ v
fo(x,x) =0 for . . .
17 1) z) "(r ’ , ‘A; N o
. 4
s e A, P ” ®
<
@
2 -z i ®
‘ : 4~ ® @
_ ‘»;-, Lok} = o, Tor, “ o °
@
Let it be for soue e
P i X P2
/‘ -
Ly we, ) ~
I:»"/‘(’/‘z ,)( . SO :,(,,} ®
v
;
! rlc.lsl:")f"vz/ . % ¢
4 i .
— /_’ &
P - * ©
] ¥t P, 0a) N © e o . . -
. } .
S v e ,
~ 2
. . lm] .
There exists then the analy gnction g, 0/ of two
® e
complex four-vectors &, « regzular in domains
5 ToeR
0, o X 2
Pisg , IS ¢S v /
& & N ~ b ® [
PSRN VAT : P :
. o & . % i
| zf - : 3 2 | (\ @38 ; ®
For real «,, «, frcem this domai
@ ) B
coincides with o F; o6
M
. j . i = { «
oo %se,) r‘u‘: ey <) 4, i) 3 vt ).
Besldes there takews place the representation fiw,«,) of
® N -
‘ @® . 5
N o N & . ? . ®
the type (3) of the theorem I &éverywhere in the domain (1) -
. ® @ iy e
) ® @
O ® o ®
[}
@ ) & ®
i ® ® ®
W @ e
w3 © PEP
. & & ©
@
»
[
) H
& 2
S
[ <

2
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°
we - 3 -
Jheorer III
Let us have the generalized functions of three
four-vectors:
Fv
r 1/' ‘1}/’ :7"-1%) AN ©,a
40 such that
Rl
. ~ ( M b}
~e ! L y =/ £ Ly .
\v G /I)[yg, !_/'5) L ITor ]'/ S \./} /4 < ()
. o~
! A { B
7,1(‘,,/'1(.71/(/;.) < for fos O v, 2
Rl
g -7 y
® /Z'J,r[ (]!)yz}‘ﬁ) - V) for 7/7 50 vo< D
-~ & ) AR
[ S L £ . ~
aaltne,v,) = O for vo> ,
y alInfers) =0, J120, 2V (1)
F o 3 ’ 2 -
o7, ) - v s . ) 2 , Y ’
Ly G = e (gt AT - ) A
] ~1 2 “ V
l{" i e “ [ -~ t L /1
, - - s X i /
o Tig o oafen SV 00 ey <y HOT St s '/r s Yge Tl T /
N A7 :/
where WV ¥/ are constants
s y )
. /r - / T
Let us take some functions
. AL V. g
v with Thé sroperties
Vo @
B al) o - are everywhere continuous with all their
- @ "“IJ
partial derivatives. '
b) The possible increase =t iafinity ('« +° , of each of these
/-
o functioiis and of any of their partial derivatives will v
i & 1ot higher than polyfiomial. : s ® -
.
S ¢) It is possible to point eut the orthonormal system of four-

vectors o 3

1
¢ e A
and tlie positive nuanbers ’ such that
4
\ “}:\‘ )~ t »\ - !
Vo e [ .
- - L] .-
\ \\, A P AT R
L @
&
@
- ?
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®
@
B . ® ) i
»
& 4 - &
\701
8 2% & ®
®
) L]
® ® @
for every real [ s ,which@satisfy@following inequalities
L4 S 2
IL’:«!“I'/Y%-E; X »V‘),‘}Z/._»

1) It is possible to construct the function

7 r "
}“"{)’ 8 )

b /‘.a
. . @ .
snalytical with respect to complex variebles
@ ® @
4 i ) R " © ,~ - ~ - @,

regular in é:he domain

. IRETEES J ® . , i p o~ &
@
[ oo ! ‘)?"#H‘ : ‘.\r STy X = ’)"‘),.“’ )
A~ /e € ® N
@ ‘17:‘{ VY
and generalized with respect to four-vector such
that for real ¥, = from the domain (3): ® o .
“
b 5 /}) = "‘/,' A /) /v,; i plr=toi e f,‘,v; ] N
2) 21, being given and arbitrary large*numbers 4, being
X 7
' 4
fixed it is possible to construct independent of fanection &
{ ®
. . L
,z T, Ly @
. ®
of real variables ® o]
: :(C"n)'” .:.g/) :1\‘ ff',) v L_;)* ®
@
which belong to the class .4, J j/6, and have period .7 with
4 . N @ p @
Pespect toevariables ., ,,  such that for any 4/  from ¢
& X
. @ @
the domain (3): @
® e »
@ /'\ @ '\..'/ ) €
s o . LY - @
U,r, . "Z "w) f . bA - /-
(975 ‘) (o 1"/5/ TR /\\75} r""a‘u{%)é(v/\(?})?éza“x(7&%zy'ﬂﬁf[
S / )
v . v ®
® ®
®
@
®
) ® ® )
) ®
@
@
&
@
®
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@
124
| o . . A 587y .. AL
Heaplte) @ b Oprte) 58 , (y)
(/ ./) /(4(0_&6(%)(vv’_r;)~ge‘%v)// f(“o(. 55e16;){ J_O_(_ ;f‘ezf;’)?
1$x53)
® iz ®
Note.
—— N @®
@® _
Let instead of conditions ®a)  (¢) of this theorem it hola
following more generag conditions:
a’)@ \(:f,? , 1 are continmous with sll their partial
' E(F) &
derivatives for every 4/3 ,for whioh®
® ® ®
& e © e » 2
® ® @13 % ¢
where ( is gome arbitrary constant.
® (O] &) @
v) 1t “(9) is one of these fumctions or one of their
nartlad degivative@s it is possible to point out for it
the integer # such that funétion
@ ® & & @ }1'/“‘ (;;\ @
, . b/‘y‘?@ -¢) il ?) @ o
will be continuous and bounded by some poly®omial
[} - . 5 ©
in (9 = 2 gl :
7 (0fat$3) ..
® @ &
and the otnetrs conditions are conserved. - &
__________________________ P e
Then it is%possfl:;le to:~point out the integ@er M such that
stetements of “he theofen’ (3) are valid if only they are
Frplated t0 Thugtion¥
e . [
(% Y )@ f‘
rather than"to ; and ©5z0 J
Al o
Theorem IV. . @
"""""" > ® @& @ (G}
© ! @ G 0w
® B
Let G & o
s = [S)
@
@ “ rf?" (Y, s ecet T ®
@ N e ¢ & -
@ @ @ © (G
Py @ :
(O] [C] _
® @
(] ®@ &
@
@9
@®
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be scalar (Lorentz-invariant) generalized functions of v . = -

a

and satisfy the conditions (1), (2) of the theorem (ITI) for

‘ 2 i B .
Wos M e / : “
4 , :
17/

where 1 » U is positive constant, and numerical factor,
greater than unity.

Let besides be

v Vo4

o - » PR
iy e g ) RN
r ¥ T fe /.«) 54 /*"Ju /. "
Then it is possible to construct the function
. “ i
S ( <, S Ay, a,/
analytical with respect to v «. s regular in domain
e “ . ¢
VSN A S AL <j\x/»"; N AT P “
. . , . [
,\L ‘(L)\‘ " ’, ’1.'1 /it ’\‘y s.;/*./«’l 47 ) s At '4!,/\ ‘) A 3 - i) _M,-

( where ¢ ig positive numerical factor) and generalized with

respect 1o L, with properties

. N Vel ",
yﬁjk‘r-"‘)‘;‘c) T e ag ~uvl b

3 ul ~ “ . . “ R < . )" < - /..” .
N AT N R TR RS A N Y O P ¥ LY ERRR L L oM e 1Y

2 i ; vhich
for every real et /o for which

N ¢ - - &

¢z, - ) ., . ; . . - . )
< T4 > v H /4! s < Uy E oy, e ) g t sy 12/

lie in the domain (1).

Theorem V.
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- 7 =
which satisfy the conditions:

4
[ Y .
f['i(l’,,..,{y/ S S § R, s 4

Ps

R

I Y .M
}.m (X Xyd Uy XX, X, 2%
PM (x)y.. %) =0; 2,2%,%5%,

Ea (x,,.%,) =0; ©2%,%,2x, (1)

F,J' (prroe py) —fc;. (poepy) =05 piaMeu)t, pic o’

~
N (7 ~ , 4
F;.z (PH"'/QY” -— l;'Q (l_,;‘”“./f;yl‘- N 'L: < ,’f‘/’ 4 4) ) 44 < /’rdug‘

174
~
7 p - (] A a2 e 3
r}‘j‘""%""'{)"‘j M:l’:’ (PI'—PFJ} < { Vl.f--‘/l,) [
)
where &  1s numerical factor greater than unity and
-~ ,’" ’ N 2 PR
.7 ¢ = ul(‘ﬁ/",f\,/’ L +—l.>},,-\/‘,/l~
f Sipoetp,) =ik a1 . ;
1;4' ’-/9,)“'/69} ot f') J Ao R Tpaee ‘{)"‘ VA, {,q
Then it is possible to comstruct the function
WD
;f Lxy “r e/
analytical with respect to <, . 4 regular in the domain (1)
from the theorem IV and generalized with vespect to 2 with
e e - —— e e o e o o s o e o —
properties
( .'7 N . ~ . 4
,’)L".L!Zj,«.. '\{)»: ,\74,’ — ‘-‘.‘, /,\{ /J«A
3 < ¢ < z ¢ 2 2 L7 "
<) P ff), A R Y R VA f,v; (1o Fy)
£ p ; . 3 v
for every real U002, Py Py connected by
R g o)
. R T R e
for which )
,2 , £ . I — | . P < N
Ky =Py K T < =R sy e, Ke TR T/

lie in the above domain.
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@

Theorem VI.

Let us have translational invariant emé, generalized functions
Y .
g Vo, ' . . ~ N
fl). ./!,,,..IV/ ' s o= 40 / LA Y= /) /J
which satisfy conditions (1), (2) of the theorem V.
1 Let us suppose further that under transiormations /,
of Lorentz group they transform linearly: .
» 7
s | - . [
! - - - /
;""""11)" {J"-I‘! h ; f;/,l :‘,'Ir P 2 L,
i faise /
S by means of some representation ¢ ., of this group, which
solits into usual tensor and spinor representations.
i Then it is possible to find out positive numerical factor
¢ which depends only on the number .~ , such that
for fﬁ)“'/W lying in the domain
ke Ry
. R
< i K i
< *5! f_i ,1’ X i, ‘i:‘f;‘(/‘ (ﬂf,y/ 1
2 ) C oy
P i’ F i L /ry 1* /
there is the representation:
- ox, ‘e ;
r Fiopne el ’ [T 1 g i o LT ‘,"r+‘ /‘7' i
with finite number of terms in the sun.
Here
e f N ‘. -

N I AP I € -

are analytical functions of complex veriables <,

regular in the domain

/\'( ST YIL/’i Rt LA U
! R ('4 . [+ Z - « (if/
11 Ay A | . [ Y ~y N N !L qo ‘ ‘5 A , JoT /)‘_v J

and generalized functions of 2, . Besides:

Cp{'?,,... 20) =0 for 26<(M+M>2- (s

w

e
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y

?

Tiis sc-called 'spectral' representstion for the function which is
- \
st sim v related (see below) to g IIK} , was first obtained by

h
ki lien -nd Leﬁ;nn They also established the properties of (4.8)

[

1.8, . g | ) \l:‘ [ i . o
Wit gl = = (M@ <O ) L)

4.10
Qw)p ( )
Sunstit ciing here x>y, we obtain
- : Sggl (9(4( iy B T (k)
O gply) Jpmly = —= | Mk ¢ R LK
SMEY IR ) ¢ (4,11}

Th = ju.5ifies the signs ( -) and  + ) introduced earlier;
the fegeiive-frequency functiocn reslly contains only negative
fr:quencies and the positive-frequency function, only positive
fr.yuenc es. It should be stressed thst thi;w;:ﬂg;own only for
vacom notrix elements; generally speaking, this property may not
be Tulfi led for matrix elements with respect to arbitrary states.
Ra ?lling now the relations (3.33) and ;;::;;;Zia them to the}
Fourier ‘ransforms with the 2id of (4.4) and also inserting the
e¥z.apsica (4.6) for gb)(k) and the expression for %(+“k)

gk = - 221 Bk?) 1) (4.12)

tha. foli-ws from (11), we obtain:

gx) = 9mifleo) TUxY) + 4
g¢lk) = Qmﬂi-w)l(k‘hgwt %) (4.13)

One very uportant consequence follows from these equations. Due to

the vrope: 5y of (4.8.1) of the spectral function ‘I[Ki) just

S 2
est:ulish«i, we see that % cmall momente k*“< CQM) the
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- &4 -
ol and(?ui’

<
Fourier transforms of all three functions 3 s 9

coincide:

-

[ ) 0.5{/‘/- (I(/ when kL\/ kK/AJ (4-14)

Sy ey

This circumstance will serve as a basis for estsblishing the

. . =5 " aghv, . wtfk |
analytic properties of the functions 9 K ,é (k) and ? (k) ’
which we shall now investigate.

Let us consider in detail the Fourier trsnsform

wt (e ey
% (€] =1 1\' A j e AX

'™
in which, wh virtue of the cgusslity condition (

. )
[ e s

4 =0 for 110 . (4.1%)

7

We shall show thaet this Fourier transform may be continued into the

region of complex k by substituting

K—7,K:.)9—rl'r' P= ‘QR_K ; : :ank
if the four-vector :ﬂ satisfies the condition
S . &
..... ke —r P
20 (4.16)
end p is arbitrary. We then have
j ) ot Y o iy -ix " u/f‘ 1r)
9 kk):‘:{l« (x)e € ax = g et
2= clear that in this ig}egral the exponent é-ri will
o

be a cut off factor ensuring its convergence. Indeed, in virtue of
(4.16)_ye will always 19 able to select.a frqye of reference in
which FZO; therefore, the exponent will take the form of
; \ e—r”x" —
| But according to (4.15) integration is actually performed only over
the internal part of the upper half of the light-cone, where

2 -
X°> 0 ma X <% .
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- n -
the px =x
Thus, function KJX): (Y will belong to o certain
1 ~ g e
’ class LCQﬂJ , in which
n g
l; f/L {x) 1"

< ey

Kmu = gu{)ixlm {%M§-~ NN X

" for any m=0, 1, «.v..y & 300 , 1, v.cny g
On the other hand, according to the condition 2.1

et
; the functidn i. (x) must be integrable and therefore the integral
N \

| /' 7% { H . /w/' :
] M e hoads s LT e

L RV -

et (4.17)
= ’ 4.1

. . e . ) .
: may be viewed as a linear functional in the space of functions h(x).
i o O

For this resson, both the integral (4.17) itself and its derivatives

% with respect to k will converge: ee

- -3 )fili/t/

i cx ® y L
i { LX/\XM.»~X@0€ g‘(sy < Qo Az L

e Thus, § (%) will be an enalytic function of k in the reglon (4.16).
Let us note further, that the integral (4.17), being a linear
functional in Ciq.%) , must ipso facto be limited in absolute

value by the linesr combination of values hwn - Since the
s . l“» . . .
! derivatives of e with respect to x are proporticnal to the

powers of k, we see that the function giot(k) increases st

infinity not faster than & certain polyfowisl with-°respect-to X SR

.

1

(here we deal of coarse with the region k in which inegqualities
(4.16) sre not relaxed.
wb
The Fourier transfcrm g (k) Por the resl k may now be

defined ss animproper limit of the integral (4.17) when

b 4™ (peiT) = 9

Fr0, 0 b (4:29)

In quite the seme way it is shown that the Fourier trensform

-adV {KY ]
adw f{; (xye  du

g )= (4.19)
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may be continued into the complex plane with the condition that

r< o
(4.20)

end after this define the integral (4.19) as animproper limit

dv adv ;

7 Loom %“ (peil) = g7 L]

-
) el adv
Thus, we have introduced two functions ¢ “¢and § % and have

(4.21)

proven their analyticity in the regions (4.16) and (4.20) respecti-

vely. It is essy to see that the relation between the introduced

functions follows from the parity relation (3.3%1) deduced earlier

gﬁ(u - gwt[pff;") < (;wix)ez“ ¢ dx
>

-3 4.22
) (4.22)
f@, and ! .
e "‘/, £ d\‘/ L [‘ ; 6(0"‘// 1 2 lr;"lli /v,—‘x ‘
g V0= g pal) < AT e
[{0
there éxists the relation
adv wl, e
3 (—p—lr) - 3 Lp+ar) (4.28)
3 >0
. For further argument let us fix the frame of reference so that
2 Y - 0. Since r is time-like, this is always possible and
in no way does it restrict generslity. " .
Qao

Let us first investigate the function g ; the function g
can always be obtained from it with the 2id of (4.28). From con-
siderations of relativistic invariance fqbt(x) can, in actuality,
depend only on x° and sign x°. But then frow (4.22) it may be seen

‘ that the values of the integral (4.22) for any two values of k
'i connected by the Lorentz transformation * , which does not in-

clude the time refiection, will simply coincide. But any two complex
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_ﬂ_

vectors k, for which the integral (4.22) is defined, are necessarily
¢t .
related by the transformstion & , since only such transforma-
—
tions retain the conditionlJ 7 0. Consequently, the left-hand side
. S
of (4.22) is (for sll k thet setisry the condition [ >0, >0 )
2 22 ) . .
a function only of k. Thas ¢ e is a certain anslytic -
G(x*) 2
(-

only of k7
%wt’[*’)-r:r) = J

o

function

K (4.23)

c~

definite only for such x == Tl Sofisfiss:

N, 7

- " L 9
mx vy o T Imk)T >0

In order to find the region of snalyticity of this fanction on the

complex plane K‘?, let us note thst in virtue of the proved enalyti-

et - . 0
city of £ i)”“‘)in the upper half-plane with—reepeet to r s

I

the function G'(—KL) will obviously be znalytic at a certsin point

R X’L'.. 7‘; z §+;7 ) . .“1,

v (4.24) '
gop-rt 5 e lpt

3 § o 07"
since one way find a2 least one vector K= L?’ il P )

—~

that setisfies (4.24), the fourth complex component of which would

lie strictly in the upper helf-plane. But from the eguations (4.24)
connecting § = %—*;VL and k, it may be seen imuediately that this
can always be done for any points of the complex plane g: §r¢'l ,

with the exception of the resl positive semi-axis:

llzlw\()tl): o - 5= Reletlzo
' (4.25)

Thas, the fuanction G (,KL)‘is analytic in the complex plane

k2 everywhere with the exéeption of the positive semi-axis. But the
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[

_ﬂ_

vectors k, for which the integral (4.22) is defined, are necessarily
related by the transformation L’«+ , since only such transforma-
tions retain the condition r; 0. Consequently, the left-hand side

of (4.22) is (for all k that satisfy the condition ra>ﬁ) >0 )

a function only of x°. Thus § (+i) is a certain analytic )

r T
function G (x) only of K%
g"w(pfj.‘) = (K% (4.2%)
definite only for such k == (nal satisfics:
T 2 L V40
mk; Yo [Iwmk)” >0
In order to find the region of snslyticity of this function on the
complex plane K2, let us note that in virtue of the proved enslyti-
"‘wf(! . 0
city of l V[le)in the upper half-plane witir—respeet to l' s

N T

the function G'U(L) will obviously be analytic at a certsin point

- E: E+i’/)

S AT R \
!

. e
. . 2.3 g
since one may find a least one vactor K= {)" vl 5 Pk y

(4.24)

that sstisfies (4.24), the fourth complex compcnent of which would

lie strictly in the upper half-plane. But frou the equations (4.24) ' =
connecting E; §+;\Z and k, 1t wmay be seen immediately that this

can always be done for sny points of the complex plane §: §r7'l ,

with the exceptican of the resl positive semi-axis:
x ) = . 5. 2
al—.lmzx)_o - Relx®) 2 0
(4.25)

Thus, the function & LKL] is analytic in the complex plane

k2 everywhere with the exception of the positive semi-exis. But the
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v

s

..5(-

function G (KZ} is s function of one scalsr vseriable, and it does
'not know' what vector raised to the sec’ond power gave rise to this
argument. For this resson, the reservation made sfter (4.23) is now
no longer needed: G (k*) will be an snslytic function for any complex
vectors K2 , the square of which is not a real positive nomber.
Finally, in virtue of the remaz;K after equation (4.17), at in-
finity G (k%) may increase not faster than the polynomial.

‘Let us now define the two (maybe generaslized) functions g, (pY

and G_(p‘} as improper limits:

Gopt) = Do GUKY Liciv s, Ke(k) 70 (4.26.1)
Tmxt- 0
and
(1) - b O(x- T k20 Reldt)
)= G SO D

If we now compare with the aid of Bgs. (4.24) the 1imit transi-

'L . r ) N
tion to the real exis in the function %p {&/ and in ‘f(l(L,.} ,given

1A EVIA RN
the condition k&LKLDU , we shall see that
PR A
Ll ) ¢
3=,
AR %A oD e (4.27)
L (SRR A {’ L u ’
P >0
The property of symmetry (4.23) now gives us straightforward
© PO L RN
adv. oy [ C=p) poe
g P)= 1 § - (4.28)
. Gy (p") prel
Po ut
Thus, we obtsined expressions for the generslized functions{,» ‘»Mmd
i‘ (p) in the form of improper iimits of a certain single sanaly-
/et .
tic function GLK ) . Ketuming again to (4.24) we find that

these limit reletions may be written also in a more simple and

[T
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- 56 -
symmetric ways

’ Ry, )
qux(‘P): Q‘V\/V\.a Y ((}7 *’Z)OO) (4.29.1)

£>0
tyo
and
ar’lwl’ ) {/VW\‘ G({v_ﬂ_i[lﬂ”o)
/ /Y
% Pl = (30 (4.29.2)
)
Now, noting that in virtue of (4.13)
i ( 9“00"5!:) poLo
3 (p) 1wt e
4 L gwfup) p“>o

we see thst the function g° Cp) may be written in the form of
animproper limit

s *P T e
v ‘JLP.‘“?—)

t=0
£ 20

%%P = & () (4.29.3)

It may be noted that in Bgs.(4.29) we permitted an indication of
the vector p being time-like on the grounds that forfi(o the
function G (pz) is regular and, consequently, the way of limit
tresnsition is simply indifferent.

Finally, subtracting (4.13) from each other we find that for

the difference of the limit values on the line of cut
2 ’ s r- / 2,‘
Gy (p*)- G (pr)= I Lep?) (4.30)

From the property of (4.8.1) of the spectral fuuciion I(pz) establi-
shed earlier, it may now be seen thet not the whole actual positive
semi-axis will represent the line of cut on the complex plane k2

for G(k%), but only a part of it

Im(e) =0 Relx) 2 (5m)*
(4.31)
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